skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: Climate change and infrastructure development drive ice-rich permafrost thaw in Point Lay (Kali), Alaska
Abstract Permafrost thaw and thermokarst development pose urgent challenges to Arctic communities, threatening infrastructure and essential services. This study examines the reciprocal impacts of permafrost degradation and infrastructure in Point Lay (Kali), Alaska, drawing on field data from ∼60 boreholes, measured and modeled ground temperature records, remote sensing analysis, and community interviews. Field campaigns from 2022–2024 reveal widespread thermokarst development and ground subsidence driven by the thaw of ice-rich permafrost. Borehole analysis confirms excess-ice contents averaging ∼40%, with syngenetic ice wedges extending over 12 m deep. Measured and modeled ground temperature data indicate a warming trend, with increasing mean annual ground temperatures and active layer thickness (ALT). Since 1949, modeled ALTs have generally deepened, with a marked shift toward consistently thicker ALTs in the 21st century. Remote sensing shows ice wedge thermokarst expanded from <5% in 1949 to >60% in developed areas by 2019, with thaw rates increasing tenfold between 1974 and 2019. In contrast, adjacent, undisturbed tundra exhibited more consistent thermokarst expansion (∼0.2% yr−1), underscoring the amplifying role of infrastructure, surface disturbance, and climate change. Community interviews reveal the lived consequences of permafrost degradation, including structural damage to homes, failing utilities, and growing dependence on alternative water and wastewater strategies. Engineering recommendations include deeper pile foundations, targeted ice wedge stabilization, aboveground utilities, enhanced snow management strategies, and improved drainage to mitigate ongoing infrastructure issues. As climate change accelerates permafrost thaw across the Arctic, this study highlights the need for integrated, community-driven adaptation strategies that blend geocryological research, engineering solutions, and local and Indigenous knowledge.  more » « less
Award ID(s):
2336164 2318375
PAR ID:
10625328
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
IOPScience
Date Published:
Journal Name:
Environmental Research: Ecology
Volume:
4
Issue:
3
ISSN:
2752-664X
Page Range / eLocation ID:
035003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This dataset documents changes in infrastructure development and associated ice wedge thermokarst formation in Point Lay (Kali), Alaska, between 1949 and 2020. The data include vector-based Geographic Information System (GIS) layers derived from high-resolution remote sensing imagery and historical aerial photographs for three key time points: 1949, 1974, and 2019/20. Infrastructure features (e.g., roads, runways, gravel pads, and buildings) were manually digitized, and the extent of ice wedge thermokarst was mapped using detailed image interpretation techniques at 1:500 scale. The dataset supports spatial analysis of thermokarst expansion in relation to anthropogenic disturbance and surface development. Findings reveal a near tenfold increase in ice wedge thermokarst extent in developed areas between 1974 and 2019, with minimal changes in adjacent undisturbed tundra, underscoring the synergistic impact of infrastructure and climate warming on permafrost degradation. These data provide a valuable baseline for tracking permafrost-related landscape changes and informing adaptation strategies in Arctic communities experiencing thaw-related infrastructure challenges. 
    more » « less
  2. Environmental impact assessments for new Arctic infrastructure do not adequately consider the likely long-term cumulative effects of climate change and infrastructure to landforms and vegetation in areas with ice-rich permafrost, due in part to lack of long-term environmental studies that monitor changes after the infrastructure is built. This case study examines long-term (1949–2020) climate- and road-related changes in a network of ice-wedge polygons, Prudhoe Bay Oilfield, Alaska. We studied four trajectories of change along a heavily traveled road and a relatively remote site. During 20 years prior to the oilfield development, the climate and landscapes changed very little. During 50 years after development, climate-related changes included increased numbers of thermokarst ponds, changes to ice-wedge-polygon morphology, snow distribution, thaw depths, dominant vegetation types, and shrub abundance. Road dust strongly affected plant-community structure and composition, particularly small forbs, mosses, and lichens. Flooding increased permafrost degradation, polygon center-trough elevation contrasts, and vegetation productivity. It was not possible to isolate infrastructure impacts from climate impacts, but the combined datasets provide unique insights into the rate and extent of ecological disturbances associated with infrastructure-affected landscapes under decades of climate warming. We conclude with recommendations for future cumulative impact assessments in areas with ice-rich permafrost. 
    more » « less
  3. Climate warming is projected to intensify tundra wildfire, with profound implications for permafrost thaw. A major uncertainty is how increased burning will interact with climate change to exacerbate thermokarst (ground-surface collapse resulting from permafrost thaw). Here we used ~70 years of remote sensing observation combined with spatially-explicit modeling to show that thermokarst rates increased by ~60% with warming climate and wildfire from 1950 to 2015 in Arctic Alaska. Wildfire amplified thermokarst over 40+ years, cumulatively creating ~9 times thermokarst formation as that in unburned tundra. However, thermokarst triggered by repeat burns did not differ from that triggered by single burns, irrespective of time between fires. Our simulation identified climate change as a principal driver for all thermokarst formed during 1950-2015 (4,700 square kilometers (km2)) in Arctic Alaska, but wildfire was disproportionately responsible for 10.5% of the thermokarst by burning merely 3.4% of the landscape. These results combined suggest that climate change and wildfire will synergistically accelerate thermokarst as the Arctic transitions in this century. 
    more » « less
  4. We studied processes of ice-wedge degradation and stabilization at three sites adjacent to road infrastructure in the Prudhoe Bay Oilfield, Alaska, USA. We examined climatic, environmental, and subsurface conditions and evaluated vulnerability of ice wedges to thermokarst in undisturbed and road-affected areas. Vulnerability of ice wedges strongly depends on the structure and thickness of soil layers above ice wedges, including the active, transient, and intermediate layers. In comparison with the undisturbed area, sites adjacent to the roads had smaller average thicknesses of the protective intermediate layer (4 cm vs. 9 cm), and this layer was absent above almost 60% of ice wedges (vs. ∼45% in undisturbed areas). Despite the strong influence of infrastructure, ice-wedge degradation is a reversible process. Deepening of troughs during ice-wedge degradation leads to a substantial increase in mean annual ground temperatures but not in thaw depths. Thus, stabilization of ice wedges in the areas of cold continuous permafrost can occur despite accumulation of snow and water in the troughs. Although thermokarst is usually more severe in flooded areas, higher plant productivity, more litter, and mineral material (including road dust) accumulating in the troughs contribute to formation of the intermediate layer, which protects ice wedges from further melting. 
    more » « less
  5. Ice-wedge thermokarst has played an important role in permafrost evolution, and numerous cycles of ice-wedge formation/degradation have occurred through the Quaternary history. Studies of ice-wedge degradation help to explain processes of past ice-wedge thermokarst and predict its future consequences. We developed a conceptual model of ice-wedge degradation/stabilization, which is based on the dynamics of the intermediate layer of the upper permafrost. This model explains high resilience of ice-wedge systems and low probability of formation of large thaw lakes in the continuous permafrost zone. Absence of the intermediate layer at the time of yedoma accumulation and increased precipitation caused very high activity of thaw-lake formation during the Pleistocene/Holocene transition. 
    more » « less