Abstract Let 𝑋 be a Kähler manifold with semiample canonical bundle K_{X}.It is proved in [W. Jian, Y. Shi and J. Song, A remark on constant scalar curvature Kähler metrics on minimal models,Proc. Amer. Math. Soc.147(2019), 8, 3507–3513] that, for any Kähler class 𝛾, there exists \delta>0such that, for all t\in(0,\delta), there exists a unique cscK metric g_{t}in K_{X}+t\gamma.In this paper, we prove that \{(X,g_{t})\}_{t\in(0,\delta)}have uniformly bounded Kähler potentials, volume forms and diameters.As a consequence, these metric spaces are pre-compact in the Gromov–Hausdorff sense. 
                        more » 
                        « less   
                    This content will become publicly available on February 11, 2026
                            
                            The Riemannian and symplectic geometry of the space of generalized Kähler structures
                        
                    
    
            On a compact complex manifold(M, J)endowed with a holomorphic Poisson tensor \pi_{J}and a de Rham class\alpha\in H^{2}(M, \mathbb{R}), we study the space of generalized Kähler (GK) structures defined by a symplectic formF\in \alphaand whose holomorphic Poisson tensor is\pi_{J}. We define a notion of generalized Kähler class of such structures, and use the moment map framework of Boulanger (2019) and Goto (2020) to extend the Calabi program to GK geometry. We obtain generalizations of the Futaki–Mabuchi extremal vector field (1995) and the Calabi–Lichnerowicz–Matsushima result (1982, 1958, 1957) for the Lie algebra of the group of automorphisms of(M, J, \pi_{J}). We define a closed1-form on a GK class, which yields a generalization of the Mabuchi energy and thus a variational characterization of GK structures of constant scalar curvature. Next we introduce a formal Riemannian metric on a given GK class, generalizing the fundamental construction of Mabuchi–Semmes–Donaldson (1987, 1992, 1997) We show that this metric has nonpositive sectional curvature, and that the Mabuchi energy is convex along geodesics, leading to a conditional uniqueness result for constant scalar curvature GK structures. We finally examine the toric case, proving the uniqueness of extremal generalized Kähler structures and showing that their existence is obstructed by the uniform relative K-stability of the corresponding Delzant polytope. Using the resolution of the Yau–Tian–Donaldson conjecture in the toric case by Chen–Cheng (2021) and He (2019), we show in some settings that this condition suffices for existence and thus construct new examples. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2203536
- PAR ID:
- 10625357
- Publisher / Repository:
- EMS Press
- Date Published:
- Journal Name:
- Commentarii Mathematici Helvetici
- Volume:
- 100
- Issue:
- 1
- ISSN:
- 0010-2571
- Page Range / eLocation ID:
- 147 to 223
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We show that axially symmetric solutions on\mathbb{S}^4to a constantQ-curvature type equation (it may also be called fourth order mean field equation) must be constant, provided that the parameter\alphain front of the Paneitz operator belongs to the interval[\frac{473 + \sqrt{209329}}{1800}\approx 0.517, 1). This is in contrast to the case\alpha=1, where there exists a family of solutions, known as standard bubbles. The phenomenon resembles the Gaussian curvature equation on\mathbb{S}^2. As a consequence, we prove an improved Beckner's inequality on\mathbb{S}^4for axially symmetric functions with their centers of mass at the origin. Furthermore, we show uniqueness of axially symmetric solutions when\alpha=1/5by exploiting Pohozaev-type identities, and prove the existence of a non-constant axially symmetric solution for\alpha \in (1/5, 1/2)via a bifurcation method.more » « less
- 
            A<sc>bstract</sc> We introduce a class of 4-dimensional crystal melting models that count the BPS bound state of branes on toric Calabi-Yau 4-folds. The crystalline structure is determined by the brane brick model associated to the Calabi-Yau 4-fold under consideration or, equivalently, its dual periodic quiver. The crystals provide a discretized version of the underlying toric geometries. We introduce various techniques to visualize crystals and their melting configurations, including 3-dimensional slicing and Hasse diagrams. We illustrate the construction with the D0-D8 system on$${\mathbb{C}}$$4. Finally, we outline how our proposal generalizes to arbitrary toric CY 4-folds and general brane configurations.more » « less
- 
            In this paper, we propose a new class of operator factorization methods to discretize the integral fractional Laplacian \begin{document}$$ (- \Delta)^\frac{{ \alpha}}{{2}} $$\end{document} for \begin{document}$$ \alpha \in (0, 2) $$\end{document}. One main advantage is that our method can easily increase numerical accuracy by using high-degree Lagrange basis functions, but remain its scheme structure and computer implementation unchanged. Moreover, it results in a symmetric (multilevel) Toeplitz differentiation matrix, enabling efficient computation via the fast Fourier transforms. If constant or linear basis functions are used, our method has an accuracy of \begin{document}$$ {\mathcal O}(h^2) $$\end{document}, while \begin{document}$$ {\mathcal O}(h^4) $$\end{document} for quadratic basis functions with \begin{document}$ h $$\end{document} a small mesh size. This accuracy can be achieved for any \begin{document}$$ \alpha \in (0, 2) $$\end{document} and can be further increased if higher-degree basis functions are chosen. Numerical experiments are provided to approximate the fractional Laplacian and solve the fractional Poisson problems. It shows that if the solution of fractional Poisson problem satisfies \begin{document}$$ u \in C^{m, l}(\bar{ \Omega}) $$\end{document} for \begin{document}$$ m \in {\mathbb N} $$\end{document} and \begin{document}$$ 0 < l < 1 $$\end{document}, our method has an accuracy of \begin{document}$$ {\mathcal O}(h^{\min\{m+l, \, 2\}}) $$\end{document} for constant and linear basis functions, while \begin{document}$$ {\mathcal O}(h^{\min\{m+l, \, 4\}}) $$\end{document}$ for quadratic basis functions. Additionally, our method can be readily applied to approximate the generalized fractional Laplacians with symmetric kernel function, and numerical study on the tempered fractional Poisson problem demonstrates its efficiency.more » « less
- 
            Abstract The paper studies complex manifolds whose Bergman metrics are incomplete but have constant holomorphic sectional curvature.We will construct a real analytic unbounded domain in \mathbb{C}^{2}whose Bergman metric is well-defined and has a positive constant holomorphic sectional curvature, which appears to be the first example of this kind.We will answer a long standing folklore conjecture that a Stein manifold has a negative constant holomorphic sectional curvature if and only if it is biholomorphic to a ball with a pluripolar set removed.Together with the uniqueness of a moment problem in the appendix of the paper provided by John Treuer, we will show that, under natural assumptions, there is no complex manifold whose Bergman metric is flat.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
