skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 10, 2025

Title: Scaling limit of soliton lengths in a multicolor box-ball system
Abstract The box-ball systems are integrable cellular automata whose long-time behavior is characterized by soliton solutions, with rich connections to other integrable systems such as the Korteweg-de Vries equation. In this paper, we consider a multicolor box-ball system with two types of random initial configurations and obtain sharp scaling limits of the soliton lengths as the system size tends to infinity. We obtain a sharp scaling limit of soliton lengths that turns out to be more delicate than that in the single color case established in [LLP20]. A large part of our analysis is devoted to studying the associated carrier process, which is a multidimensional Markov chain on the orthant, whose excursions and running maxima are closely related to soliton lengths. We establish the sharp scaling of its ruin probabilities, Skorokhod decomposition, strong law of large numbers and weak diffusive scaling limit to a semimartingale reflecting Brownian motion with explicit parameters. We also establish and utilize complementary descriptions of the soliton lengths and numbers in terms of modified Greene-Kleitman invariants for the box-ball systems and associated circular exclusion processes.  more » « less
Award ID(s):
2023239
PAR ID:
10625804
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Forum of Mathematics, Sigma
Volume:
12
ISSN:
2050-5094
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The box-ball systems are integrable cellular automata whose long-time behavior is characterized by soliton solutions, with rich connections to other integrable systems such as the Korteweg-de Vries equation. In this paper, we consider a multicolor box-ball system with two types of random initial configurations and obtain sharp scaling limits of the soliton lengths as the system size tends to infinity. We obtain a sharp scaling limit of soliton lengths that turns out to be different from the single color case as established in [LLP20]. A large part of our analysis is devoted to studying the associated carrier process, which is a multi-dimensional Markov chain on the orthant, whose excursions and running maxima are closely related to soliton lengths. We establish the sharp scaling of its ruin probabilities, Skorokhod decomposition, strong law of large numbers, and weak diffusive scaling limit to a semimartingale reflecting Brownian motion with explicit parameters. We also establish and utilize complementary descriptions of the soliton lengths and numbers in terms of the modified Greene-Kleitman invariants for the box-ball systems and associated circular exclusion processes. 
    more » « less
  2. A box-ball system (BBS) is a discrete dynamical system consisting of n balls in an infinite strip of boxes. During each BBS move, the balls take turns jumping to the first empty box, beginning with the smallest-numbered ball. The one-line notation of a permutation can be used to define a BBS state. This paper proves that the Robinson-Schensted (RS) recording tableau of a permutation completely determines the dynamics of the box-ball system containing the permutation. Every box-ball system eventually reaches steady state, decomposing into solitons. We prove that the rightmost soliton is equal to the first row of the RS insertion tableau and it is formed after at most one BBS move. This fact helps us compute the number of BBS moves required to form the rest of the solitons. First, we prove that if a permutation has an L-shaped soliton decomposition then it reaches steady state after at most one BBS move. Permutations with L-shaped soliton decompositions include noncrossing involutions and column reading words. Second, we make partial progress on the conjecture that every permutation on n objects reaches steady state after at most n-3 BBS moves. Furthermore, we study the permutations whose soliton decompositions are standard; we conjecture that they are closed under consecutive pattern containment and that the RS recording tableaux belonging to such permutations are counted by the Motzkin numbers. 
    more » « less
  3. We present an analytical model of integrable turbulence in the focusing nonlinear Schrödinger (fNLS) equation, generated by a one-parameter family of finite-band elliptic potentials in the semiclassical limit. We show that the spectrum of these potentials exhibits a thermodynamic band/gap scaling compatible with that of soliton and breather gases depending on the value of the elliptic parameter 𝑚 of the potential. We then demonstrate that, upon augmenting the potential by a small random noise (which is inevitably present in real physical systems), the solution of the fNLS equation evolves into a fully randomized, spatially homogeneous breather gas, a phenomenon we call breather gas fission. We show that the statistical properties of the breather gas at large times are determined by the spectral density of states generated by the unperturbed initial potential. We analytically compute the kurtosis of the breather gas as a function of the elliptic parameter 𝑚 , and we show that it is greater than 2 for all nonzero 𝑚 , implying non-Gaussian statistics. Finally, we verify the theoretical predictions by comparison with direct numerical simulations of the fNLS equation. These results establish a link between semiclassical limits of integrable systems and the statistical characterization of their soliton and breather gases. 
    more » « less
  4. A box-ball system is a collection of discrete time states. At each state, we have a collection of countably many boxes with each integer from 1 to n assigned to a unique box; the remaining boxes are considered empty. A permutation on n objects gives a box-ball system state by assigning the permutation in one-line notation to the first n boxes. After a finite number of steps, the system will reach a so-called soliton decomposition which has an integer partition shape. We prove the following: if the soliton decomposition of a permutation is a standard Young tableau or if its shape coincides with its Robinson–Schensted (RS) partition, then its soliton decomposition and its RS insertion tableau are equal. We study the time required for a box-ball system to reach a steady state. We also generalize Fukuda’s single-carrier algorithm to algorithms with more than one carrier. 
    more » « less
  5. We consider heterogeneously interacting diffusive particle systems and their large population limit. The interaction is of mean field type with weights characterized by an underlying graphon. A law of large numbers result is established as the system size increases and the underlying graphons converge. The limit is given by a graphon mean field system consisting of independent but heterogeneous nonlinear diffusions whose probability distributions are fully coupled. Well-posedness, continuity and stability of such systems are provided. We also consider a not-so-dense analogue of the finite particle system, obtained by percolation with vanishing rates and suitable scaling of interactions. A law of large numbers result is proved for the convergence of such systems to the corresponding graphon mean field system. 
    more » « less