Abstract. Fairbanks, Alaska, is a sub-Arctic city that frequently suffers from the non-attainment of national air quality standards in the wintertime due to the coincidence of weak atmospheric dispersion and increased local emissions. As part of the Alaskan Layered Pollution and Chemical Analysis (ALPACA) campaign, we deployed a Chemical Analysis of Aerosol Online (CHARON) inlet coupled with a proton transfer reaction time-of-flight mass spectrometer (PTR-ToF MS) and an Aerodyne high-resolution aerosol mass spectrometer (AMS) to measure organic aerosol (OA) and non-refractory submicron particulate matter (NR-PM1), respectively. We deployed a positive matrix factorization (PMF) analysis for the source identification of NR-PM1. The AMS analysis identified three primary factors: biomass burning, hydrocarbon-like, and cooking factors, which together accounted for 28 %, 38 %, and 11 % of the total OA, respectively. Additionally, a combined organic and inorganic PMF analysis revealed two further factors: one enriched in nitrates and another rich in sulfates of organic and inorganic origin. The PTRCHARON factorization could identify four primary sources from residential heating: one from oil combustion and three from wood combustion, categorized as low temperature, softwood, and hardwood. Collectively, all residential heating factors accounted for 79 % of the total OA. Cooking and road transport were also recognized as primary contributors to the overall emission profile provided by PTRCHARON. All PMF analyses could apportion a single oxygenated secondary organic factor. These results demonstrate the complementarity of the two instruments and their ability to describe the complex chemical composition of PM1 and related sources. This work further demonstrates the capability of PTRCHARON to provide both qualitative and quantitative information, offering a comprehensive understanding of the OA sources. Such insights into the sources of submicron aerosols can ultimately assist environmental regulators and citizens in improving the air quality in Fairbanks and in rapidly urbanizing regional sub-Arctic areas.
more »
« less
This content will become publicly available on August 5, 2026
Wintertime Abundance and Sources of Key Trace Gas and Particle Species in Fairbanks, Alaska
Abstract We investigated how various sources contributed to observations of over 40 trace gas and particulate species in a typical Fairbanks residential neighborhood during the Alaskan Layered Pollution and Chemical Analysis campaign in January–February 2022. Aromatic volatile organic compounds (VOCs) accounted for ∼50% of measured VOCs (molar ratio), while methanol and ethanol accounted for ∼34%. The total wintertime VOC burden and contribution from aromatics were much higher than other US urban areas. Based on diel cycles and positive matrix factorization (PMF) analyses, we find traffic was the largest source of NO, CO, black carbon, and aromatic VOCs. Formic and acetic acid, hydroxyacetone, furanoids, and other VOCs were primarily attributed to residential wood combustion (RWC). Formaldehyde was one of several VOCs featuring significant contributions from multiple sources: RWC (∼35%), aging (∼30%), traffic (∼21%), and heating oil combustion (HO, ∼14%). PMF solutions assigned primary fine particulate matter to RWC (10%–30%), traffic (25%–40%), and HO (30%–60%), the latter likely reflecting high sulfur emissions from older furnaces and fast secondary chemistry. Despite cold and dark conditions, secondary processes impacted many trace gas and particle species' budget by ±10%–20% and more in some cases. Transport of O3‐rich regional air into Fairbanks contributed to aging, specifically NO3radical formation. This work highlights a long‐term trend observed in Fairbanks: increasing traffic and decreasing RWC relative contributions as total pollution decreases. Fairbanks exports a relatively fresh pollutant mixture to the regional arctic, the fate of which warrants future study.
more »
« less
- Award ID(s):
- 2109240
- PAR ID:
- 10626044
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Atmospheres
- Volume:
- 130
- Issue:
- 15
- ISSN:
- 2169-897X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present measurements of volatile organic compounds (VOCs) and other trace gases taken in Salt Lake City, Utah in August and September 2022. As part of the Salt Lake regional Smoke, Ozone and Aerosol Study (SAMOZA), 35 VOCs were measured with two methods: a proton‐transfer‐reaction time‐of‐flight mass spectrometer (PTR‐ToF‐MS) and 2,4‐dinitrophenylhydrazine (DNPH) cartridges analyzed by high‐performance liquid chromatography (HPLC). Over two months, the total measured VOCs averaged 32 ± 24 ppb (mean ± standard deviation) with the hourly maximum at 141 ppb, and the total calculated OH reactivity averaged 3.7 ± 3.0 s−1(maximum at 20.7 s−1). Among them, methanol and ethanol were the most abundant VOCs, making up 42% of the ambient mixing ratio. Isoprene and monoterpenes contributed 25% of the OH reactivity from VOCs, while formaldehyde and acetaldehyde made up another 30%. The positive matrix factorization analysis showed 5 major sources of VOCs, with 32% of abundance being attributed to secondary production/biogenic sources, 44% from the combination of traffic and personal care products, 15% from industrial solvent use, and the rest from biomass burning (10%). Moderate smoke‐impacted days elevated various hazardous air pollutants (HAPs) on average by 45%–217% compared to smoke‐free days. The ratio of OH reactivity from NOxto that from VOCs showed that ozone production was mostly VOC‐limited throughout the campaign, consistent with our modeling study. VOCs and NOxboth showed increased OH reactivity due to smoke influence. NOxfeatured increased reactivity on weekdays compared to weekends, an effect not shown for VOC reactivity during SAMOZA.more » « less
-
The high levels of sulfate in wintertime particles in Fairbanks, Alaska, are a subject of keen research interest and regulatory concern. Recent results from the 2022 Alaska Layered Pollution And Chemical Analysis (ALPACA) field campaign indicate that roughly 40 % of wintertime sulfate in Fairbanks is secondary, with hydrogen peroxide (HOOH) the dominant oxidant. Since formation of HOOH in the gas phase should be negligible during ALPACA because of high levels of NOx, we examined whether reactions within particles could be a significant source of HOOH. To test this, we collected particulate matter (PM) samples during the ALPACA campaign, extracted them, illuminated them with simulated sunlight, and measured HOOH production. Aqueous extracts showed significant light absorption, a result of brown carbon (BrC) from sources such as residential wood combustion. Photoformation rates of HOOH in the PM extracts (PMEs; normalized to Fairbanks winter sunlight) range from 6 to 71 µM/h. While light absorption is nearly independent of pH, HOOH formation rates decrease with increasing pH. Extrapolating to the concentrated conditions of aerosol liquid water (ALW) gives an average rate of in-particle HOOH formation of ∼ 0.1 M/h. Corresponding rates of sulfate formation from particle-produced HOOH are 0.05–0.5 µg/m3/h, accounting for a significant portion of the secondary sulfate production rate. Our results show that HOOH formed in particles makes an important contribution to sulfate formation in ambient wintertime particles, even under the low actinic flux conditions typical of winter in subarctic locations like Fairbanks.more » « less
-
Abstract An extensive set of primary and secondary pollutants was measured at a ground site in a remote location in the Yellow River Delta, China during the Ozone Photochemistry and Export from China Experiment (OPECE) from March to April 2018. The measurements include volatile organic compounds (VOCs), peroxyacyl nitrates (PANs), ozone (O3), particulate species, nitrogen oxides (NOx), and SO2. Observed VOC mixing ratios were comparable to those measured in heavily polluted cities in the U.S. and China. The VOC source signatures suggest a strong influence from Oil and Natural Gas (O&NG) emissions with potentially large contributions from Liquified Petroleum Gas (LPG) sources as well. Consistently elevated concentrations of O3, PAN, and its rarely measured homologs peroxybenzoylic nitric anhydride (PBzN) and peroxyacrylic nitric anhydride (APAN) at the OPECE site indicate complex photochemistry in a heterogeneous VOC environment. Diagnostic 0‐D box model simulations are used to investigate the budgets of ROx(OH + HO2 + RO2), and the rate and efficiency of O3production. Model sensitivity calculations indicate that O3production at OPECE site is VOC limited in spring. This suggests that reduction in VOCs should be a priority for reducing O3, where production and fugitive emissions from O&NG provide an attractive target. While initial reductions in NOxmight increase O3production, reduction of NOxalong with VOCs will be a necessary step to achieve long‐term ozone reduction.more » « less
-
Recent studies have found concentrations of reactive chlorine species to be higher than expected, suggesting that atmospheric chlorine chemistry is more extensive than previously thought. Chlorine radicals can interact with hydroperoxy (HOx) radicals and nitrogen oxides (NOx) to alter the oxidative capacity of the atmosphere. They are known to rapidly oxidize a wide range of volatile organic compounds (VOCs) found in the atmosphere, yet little is known about secondary organic aerosol (SOA) formation from chlorine-initiated photooxidation and its atmospheric implications. Environmental chamber experiments were carried out under low-NOx conditions with isoprene and chlorine as primary VOC and oxidant sources. Upon complete isoprene consumption, observed SOA yields ranged from 7 to 36 %, decreasing with extended photooxidation and SOA aging. Formation of particulate organochloride was observed. A high-resolution time-of-flight chemical ionization mass spectrometer was used to determine the molecular composition of gas-phase species using iodide–water and hydronium–water cluster ionization. Multi-generational chemistry was observed, including ions consistent with hydroperoxides, chloroalkyl hydroperoxides, isoprene-derived epoxydiol (IEPOX), and hypochlorous acid (HOCl), evident of secondary OH production and resulting chemistry from Cl-initiated reactions. This is the first reported study of SOA formation from chlorine-initiated oxidation of isoprene. Results suggest that tropospheric chlorine chemistry could contribute significantly to organic aerosol loading.more » « less
An official website of the United States government
