skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 1, 2026

Title: From Lagrangian products to toric domains via the Toda lattice
Abstract In this paper we use the periodic Toda lattice to show that certain Lagrangian product configurations in the classical phase space are symplectically equivalent to toric domains. In particular, we prove that the Lagrangian product of a certain simplex and the Voronoi cell of the root lattice$$A_n$$is symplectically equivalent to a Euclidean ball. As a consequence, we deduce that the Lagrangian product of an equilateral triangle and a regular hexagon is symplectomorphic to a Euclidean ball in dimension 4.  more » « less
Award ID(s):
1926686
PAR ID:
10626347
Author(s) / Creator(s):
; ;
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Compositio Mathematica
Volume:
161
Issue:
2
ISSN:
0010-437X
Page Range / eLocation ID:
365 to 384
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The well-studied moduli space of complex cubic surfaces has three different, but isomorphic, compact realizations: as a GIT quotient$${\mathcal {M}}^{\operatorname {GIT}}$$, as a Baily–Borel compactification of a ball quotient$${(\mathcal {B}_4/\Gamma )^*}$$, and as a compactifiedK-moduli space. From all three perspectives, there is a unique boundary point corresponding to non-stable surfaces. From the GIT point of view, to deal with this point, it is natural to consider the Kirwan blowup$${\mathcal {M}}^{\operatorname {K}}\rightarrow {\mathcal {M}}^{\operatorname {GIT}}$$, whereas from the ball quotient point of view, it is natural to consider the toroidal compactification$${\overline {\mathcal {B}_4/\Gamma }}\rightarrow {(\mathcal {B}_4/\Gamma )^*}$$. The spaces$${\mathcal {M}}^{\operatorname {K}}$$and$${\overline {\mathcal {B}_4/\Gamma }}$$have the same cohomology, and it is therefore natural to ask whether they are isomorphic. Here, we show that this is in factnotthe case. Indeed, we show the more refined statement that$${\mathcal {M}}^{\operatorname {K}}$$and$${\overline {\mathcal {B}_4/\Gamma }}$$are equivalent in the Grothendieck ring, but notK-equivalent. Along the way, we establish a number of results and techniques for dealing with singularities and canonical classes of Kirwan blowups and toroidal compactifications of ball quotients. 
    more » « less
  2. Abstract We prove novel asymptotic freeness results in tracial ultraproduct von Neumann algebras. In particular, we show that whenever$$M = M_1 \ast M_2$$is a tracial free product von Neumann algebra and$$u_1 \in \mathscr U(M_1)$$,$$u_2 \in \mathscr U(M_2)$$are Haar unitaries, the relative commutants$$\{u_1\}' \cap M^{\mathcal U}$$and$$\{u_2\}' \cap M^{\mathcal U}$$are freely independent in the ultraproduct$$M^{\mathcal U}$$. Our proof relies on Mei–Ricard’s results [MR16] regarding$$\operatorname {L}^p$$-boundedness (for all$$1 < p < +\infty $$) of certain Fourier multipliers in tracial amalgamated free products von Neumann algebras. We derive two applications. Firstly, we obtain a general absorption result in tracial amalgamated free products that recovers several previous maximal amenability/Gamma absorption results. Secondly, we prove a new lifting theorem which we combine with our asymptotic freeness results and Chifan–Ioana–Kunnawalkam Elayavalli’s recent construction [CIKE22] to provide the first example of a$$\mathrm {II_1}$$factor that does not have property Gamma and is not elementary equivalent to any free product of diffuse tracial von Neumann algebras. 
    more » « less
  3. Abstract We study a skew product transformation associated to an irrational rotation of the circle$$[0,1]/\sim $$. This skew product keeps track of the number of times an orbit of the rotation lands in the two complementary intervals of$$\{0,1/2\}$$in the circle. We show that under certain conditions on the continued fraction expansion of the irrational number defining the rotation, the skew product transformation has certain dense orbits. This is in spite of the presence of numerous non-dense orbits. We use this to construct laminations on infinite type surfaces with exotic properties. In particular, we show that for every infinite type surface with an isolated planar end, there is aninfiniteclique of$$2$$-filling rays based at that end. These$$2$$-filling rays are relevant to Bavard and Walker’sloop graphs. 
    more » « less
  4. Abstract We consider manifold-knot pairs$$(Y,K)$$, whereYis a homology 3-sphere that bounds a homology 4-ball. We show that the minimum genus of a PL surface$$\Sigma $$in a homology ballX, such that$$\partial (X, \Sigma ) = (Y, K)$$can be arbitrarily large. Equivalently, the minimum genus of a surface cobordism in a homology cobordism from$$(Y, K)$$to any knot in$$S^3$$can be arbitrarily large. The proof relies on Heegaard Floer homology. 
    more » « less
  5. We study homeomorphisms of a Cantor set with$$k$$($$k<+\infty$$) minimal invariant closed (but not open) subsets; we also study crossed product C*-algebras associated to these Cantor systems and certain of their orbit-cut sub-C*-algebras. In the case where$$k\geq 2$$, the crossed product C*-algebra is stably finite, has stable rank 2, and has real rank 0 if in addition$$(X,\unicode[STIX]{x1D70E})$$is aperiodic. The image of the index map is connected to certain directed graphs arising from the Bratteli–Vershik–Kakutani model of the Cantor system. Using this, it is shown that the ideal of the Bratteli diagram (of the Bratteli–Vershik–Kakutani model) must have at least$$k$$vertices at each level, and the image of the index map must consist of infinitesimals. 
    more » « less