skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 1, 2025

Title: A 3D view of multiple populations’ kinematics in Galactic globular clusters
We present the first 3D kinematic analysis of multiple stellar populations (MPs) in a representative sample of 16 Galactic globular clusters (GCs). For each GC in the sample, we studied the MP line-of-sight, plane-of-the-sky and 3D rotation, and velocity distribution anisotropy. The differences between first-population (FP) and second-population (SP) kinematic patterns were constrained by means of parameters specifically defined to provide a global measure of the relevant physical quantities and to enable a meaningful comparison among different clusters. Our analysis provides the first observational description of the MP kinematic properties and of the path they follow during their long-term dynamical evolution. In particular, we find evidence of differences between the rotation of MPs along all velocity components with the SP preferentially rotating faster than the FP. The difference between the rotation strength of MPs is anticorrelated with the cluster dynamical age. We also observe that FPs are characterized by isotropic velocity distributions at any dynamical age probed by our sample. On the contrary, the velocity distribution of SP stars is found to be radially anisotropic in dynamically young clusters and isotropic at later evolutionary stages. The comparison with a set of numerical simulations shows that these observational results are consistent with the long-term evolution of clusters forming with an initially more centrally concentrated and more rapidly rotating SP subsystem. We discuss the possible implications these findings have on our understanding of MP formation and early evolution.  more » « less
Award ID(s):
2009193
PAR ID:
10626403
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Astronomy and Astrophysics
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
691
ISSN:
0004-6361
Page Range / eLocation ID:
A94
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. All multiple population (MP) formation models in globular clusters (GCs) predict that second population (SP) stars form more centrally concentrated than the first population (FP). As dynamical evolution proceeds, spatial differences are progressively erased and only dynamically young clusters are expected to retain a partial memory of the initial structural differences. In recent years, this picture has been supported by observations of the MP radial distributions of both Galactic and extragalactic GCs. However, more recent observations have suggested that in some systems, FPs might actually form more centrally segregated, with NGC 3201 being one significant example of such a possibility. Here, we present a detailed morphological and kinematic characterization of the MPs in NGC 3201, based on a combination of photometric and astrometric data. We show that the distribution of the SP is clearly bimodal. Specifically, the SP is significantly more centrally concentrated than the FP within ∼1.3 cluster’s half-mass radius. Beyond this point, the SP fraction increases again, likely due to asymmetries in the spatial distributions of the two populations. The central concentration of the SP observed in the central regions implies that it formed more centrally concentrated than the FP, even more so than what is observed in the present-day. This interpretation is supported by the key information provided by the MP kinematic properties. Indeed, we find that the FP is isotropic across all the sampled cluster extension, while the velocity distribution of the SP becomes radially anisotropic in the cluster’s outer regions, as expected for the dynamical evolution of SP stars formed more centrally concentrated than the FP. The combination of spatial and kinematic observations provide key insights into the dynamical properties of this cluster and lend further support to scenarios in which the SP forms more centrally concentrated than the FP. 
    more » « less
  2. NGC 2419 is likely the globular cluster (GC) with the lowest dynamical age in the Galaxy. This makes it an extremely interesting target for studying the properties of its multiple populations (MPs), as they are likely to have been affected only modestly by long-term dynamical evolution effects. Here we present for the first time a detailed analysis of the structural and morphological properties of the MPs along the whole extension of this remote and massive GC by combining high-resolution HST and wide-field ground-based data. In agreement with formation models predicting that second population (SP) stars form in the inner regions of the first population (FP) system, we find that the SP is more centrally concentrated than the FP. This may provide constraints on the relative concentrations of MPs in GCs in the early stages of the evolutionary phase driven by two-body relaxation. In addition, we find that the fraction of FP stars is larger than expected from the general trend drawn by Galactic GCs. If NGC 2419 formed in the Sagittarius dwarf galaxy and was later accreted by the Milky Way, as suggested by a number of studies, we show that the observed FP fraction may be due to the transition of NGC 2419 to a weaker tidal field (its current Galactocentric distance isdgc ∼ 95 kpc) and consequently to a reduced rate of FP star loss. 
    more » « less
  3. Recent work withJWSThas demonstrated its capability to identify and chemically characterize multiple populations in globular clusters down to the H-burning limit. In this study, we explore the kinematics of multiple populations in the globular cluster 47 Tucanae by combining data fromJWST, HST, Gaia, and ground-based telescopes. We analyzed velocity dispersion and anisotropy profiles from the cluster center out to ∼10Rh. Our findings indicate that while first population (1G) stars’ motions are isotropic, second population (2G) stars’ motions are significantly radially anisotropic. These results align with the predictions of simulations of the dynamical evolution of clusters where 2G stars are initially more centrally concentrated than 1G stars. Furthermore, we subdivided the 2G population into two subpopulations: 2GAand 2GB, with the latter being more chemically extreme. We compared their dynamical profiles and found no significant differences. For the first time, we measured the degree of energy equipartition among the multiple populations of 47 Tucanae. Overall, within the analyzed radial range (∼2–4Rh), both populations exhibit a low degree of energy equipartition. The most significant differences between 1G and 2G stars are observed in the tangential velocity component, where 2G stars are characterized by a stronger degree of energy equipartition than 1G stars. In the radial component, the behavior of 1G and 2G stars is more variable, with differences largely dependent on radius. Moreover, our analysis reveals that the ratio of rotational velocity to velocity dispersion is larger for the 2G population. Finally, we found that 1G stars exhibit a higher skewness in their tangential proper motions than 2G stars, providing additional evidence of kinematic differences between the two stellar generations. 
    more » « less
  4. ABSTRACT By means of 3D hydrodynamic simulations, we explore the effects of rotation in the formation of second-generation (SG) stars in globular clusters (GC). Our simulations follow the SG formation in a first-generation (FG) internally rotating GC; SG stars form out of FG asymptotic giant branch (AGB) ejecta and external pristine gas accreted by the system. We have explored two different initial rotational velocity profiles for the FG cluster and two different inclinations of the rotational axis with respect to the direction of motion of the external infalling gas, whose density has also been varied. For a low (10−24 g cm−3) external gas density, a disc of SG helium-enhanced stars is formed. The SG is characterized by distinct chemo-dynamical phase space patterns: it shows a more rapid rotation than the FG with the helium-enhanced SG subsystem rotating more rapidly than the moderate helium-enhanced one. In models with high external gas density ($$10^{-23}\, {\rm g\ cm^{-3}}$$), the inner SG disc is disrupted by the early arrival of external gas and only a small fraction of highly enhanced helium stars preserves the rotation acquired at birth. Variations in the inclination angle between the rotation axis and the direction of the infalling gas and the velocity profile can slightly alter the extent of the stellar disc and the rotational amplitude. The results of our simulations illustrate the complex link between dynamical and chemical properties of multiple populations and provide new elements for the interpretation of observational studies and future investigations of the dynamics of multiple-population GCs. 
    more » « less
  5. Abstract We explore the redshift evolution of the dynamical properties of massive clusters and their brightest cluster galaxies (BCGs) at z < 2 based on the IllustrisTNG-300 simulation. We select 270 massive clusters with M 200 < 10 14 M ⊙ at z = 0 and trace their progenitors based on merger trees. From 67 redshift snapshots covering z < 2, we compute the 3D subhalo velocity dispersion as a cluster velocity dispersion ( σ cl ). We also calculate the 3D stellar velocity dispersion of the BCGs ( σ *,BCG ). Both σ cl and σ *,BCG increase as the universe ages. The BCG velocity dispersion grows more slowly than the cluster velocity dispersion. Furthermore, the redshift evolution of the BCG velocity dispersion shows dramatic changes at some redshifts resulting from dynamical interaction with neighboring galaxies (major mergers). We show that σ *,BCG is comparable with σ cl at z > 1, offering an interesting observational test. The simulated redshift evolution of σ cl and σ *,BCG generally agrees with an observed cluster sample for z < 0.3, but with large scatter. Future large spectroscopic surveys reaching to high redshift will test the implications of the simulations for the mass evolution of both clusters and their BCGs. 
    more » « less