Nearly all classical inf-sup stable mixed finite element methods for the incompressible Stokes equations are not pressure-robust, i.e., the velocity error is dependent on the pressure. However, recent results show that pressure-robustness can be recovered by a nonstandard discretization of the right-hand side alone. This variational crime introduces a consistency error in the method which can be estimated in a straightforward manner provided that the exact velocity solution is sufficiently smooth. The purpose of this paper is to analyze the pressure-robust scheme with low regularity. The numerical analysis applies divergence-free $H^1$-conforming Stokes finite element methods as a theoretical tool. As an example, pressure-robust velocity and pressure a priori error estimates will be presented for the (first-order) nonconforming Crouzeix-Raviart element. A key feature in the analysis is the dependence of the errors on the Helmholtz projector of the right-hand side data, and not on the entire data term. Numerical examples illustrate the theoretical results.
more »
« less
A pressure-robust divergence free finite element basis for the Stokes equations
This paper considered divergence-free basis methods to solve the viscous Stokes equations. A discrete divergence-free subspace was constructed to reduce the saddle point problem of the Stokes problem to a smaller-sized symmetric and positive definite system solely depending on the velocity components. Then, the system could decouple the unknowns in velocity and pressure and solve them independently. However, such a scheme may not ensure an accurate numerical solution to the velocity. In order to obtain satisfactory accuracy, we used a velocity reconstruction technique to enhance the divergence-free scheme to achieve the desired pressure and viscosity robustness. Numerical results were presented to demonstrate the robustness and accuracy of this discrete divergence-free method.
more »
« less
- PAR ID:
- 10626429
- Publisher / Repository:
- AIMs Press
- Date Published:
- Journal Name:
- Electronic Research Archive
- Volume:
- 32
- Issue:
- 10
- ISSN:
- 2688-1594
- Page Range / eLocation ID:
- 5633 to 5648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)We construct a numerical scheme based on the scalar auxiliary variable (SAV) approach in time and the MAC discretization in space for the Cahn–Hilliard–Navier–Stokes phase- field model, prove its energy stability, and carry out error analysis for the corresponding Cahn–Hilliard–Stokes model only. The scheme is linear, second-order, unconditionally energy stable and can be implemented very efficiently. We establish second-order error estimates both in time and space for phase-field variable, chemical potential, velocity and pressure in different discrete norms for the Cahn–Hilliard–Stokes phase-field model. We also provide numerical experiments to verify our theoretical results and demonstrate the robustness and accuracy of our scheme.more » « less
-
We develop a mixed finite element method for the coupled problem arising in the interaction between a free fluid governed by the Stokes equations and flow in deformable porous medium modeled by the Biot system of poroelasticity. Mass conservation, balance of stress, and the Beavers–Joseph–Saffman condition are imposed on the interface. We consider a fully mixed Biot formulation based on a weakly symmetric stress-displacement-rotation elasticity system and Darcy velocity-pressure flow formulation. A velocity-pressure formulation is used for the Stokes equations. The interface conditions are incorporated through the introduction of the traces of the structure velocity and the Darcy pressure as Lagrange multipliers. Existence and uniqueness of a solution are established for the continuous weak formulation. Stability and error estimates are derived for the semi-discrete continuous-in-time mixed finite element approximation. Numerical experiments are presented to verify the theoretical results and illustrate the robustness of the method with respect to the physical parameters.more » « less
-
A finite difference numerical scheme is proposed and analyzed for the Cahn-Hilliard-Stokes system with Flory-Huggins energy functional. A convex splitting is applied to the chemical potential, which in turns leads to the implicit treatment for the singular logarithmic terms and the surface diffusion term, and an explicit update for the expansive concave term. The convective term for the phase variable, as well as the coupled term in the Stokes equation, is approximated in a semi-implicit manner. In the spatial discretization, the marker and cell difference method is applied, which evaluates the velocity components, the pressure and the phase variable at different cell locations. Such an approach ensures the divergence-free feature of the discrete velocity, and this property plays an important role in the analysis. The positivity-preserving property and the unique solvability of the proposed numerical scheme are theoretically justified, utilizing the singular nature of the logarithmic term as the phase variable approaches the singular limit values. An unconditional energy stability analysis is standard, as an outcome of the convex-concave decomposition technique. A convergence analysis with accompanying error estimate is provided for the proposed numerical scheme. In particular, a higher order consistency analysis, accomplished by supplementary functions, is performed to ensure the separation properties of numerical solution. In turn, using the approach of rough and refined error estimates, we are able to derive an optimal rate convergence. To conclude, several numerical experiments are presented to validate the theoretical analysis.more » « less
-
Abstract This paper constructs and analyzes a boundary correction finite element method for the Stokes problem based on the Scott–Vogelius pair on Clough–Tocher splits. The velocity space consists of continuous piecewise polynomials of degree k , and the pressure space consists of piecewise polynomials of degree ( k – 1) without continuity constraints. A Lagrange multiplier space that consists of continuous piecewise polynomials with respect to the boundary partition is introduced to enforce boundary conditions and to mitigate the lack of pressure-robustness. We prove several inf-sup conditions, leading to the well-posedness of the method. In addition, we show that the method converges with optimal order and the velocity approximation is divergence-free.more » « less
An official website of the United States government

