skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Unavoidable structures in infinite tournaments
We prove a strong dichotomy result for countably-infinite oriented graphs; that is, we prove that for all countably-infinite oriented graphs G G , either (i) there is a countably-infinite tournament K K such that G K G\not \subseteq K , or (ii) every countably-infinite tournament contains aspanningcopy of G G . Furthermore, we are able to give a concise characterization of such oriented graphs. Our characterization becomes even simpler in the case of transitive acyclic oriented graphs (i.e. strict partial orders). For uncountable oriented graphs, we are able to extend the dichotomy result mentioned above to all regular cardinals κ<#comment/> \kappa ; however, we are only able to provide a concise characterization in the case when κ<#comment/> = ℵ<#comment/> 1 \kappa =\aleph _1 more » « less
Award ID(s):
1954170
PAR ID:
10626492
Author(s) / Creator(s):
; ;
Publisher / Repository:
AMS
Date Published:
Journal Name:
Proceedings of the American Mathematical Society
Volume:
152
Issue:
784
ISSN:
0002-9939
Page Range / eLocation ID:
4231 to 4244
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We say a null-homologous knot K K in a 3 3 -manifold Y Y has Property G, if the Thurston norm and fiberedness of the complement of K K is preserved under the zero surgery on K K . In this paper, we will show that, if the smooth 4 4 -genus of K ×<#comment/> { 0 } K\times \{0\} (in a certain homology class) in ( Y ×<#comment/> [ 0 , 1 ] ) #<#comment/> N C P 2 ¯<#comment/> (Y\times [0,1])\#N\overline {\mathbb CP^2} , where Y Y is a rational homology sphere, is smaller than the Seifert genus of K K , then K K has Property G. When the smooth 4 4 -genus is 0 0 , Y Y can be taken to be any closed, oriented 3 3 -manifold. 
    more » « less
  2. Let ( G / Γ<#comment/> , R a ) (G/\Gamma ,R_a) be an ergodic k k -step nilsystem for k ≥<#comment/> 2 k\geq 2 . We adapt an argument of Parry [Topology 9 (1970), pp. 217–224] to show that L 2 ( G / Γ<#comment/> ) L^2(G/\Gamma ) decomposes as a sum of a subspace with discrete spectrum and a subspace of Lebesgue spectrum with infinite multiplicity. In particular, we generalize a result previously established by Host–Kra–Maass [J. Anal. Math.124(2014), pp. 261–295] for 2 2 -step nilsystems and a result by Stepin [Uspehi Mat. Nauk24(1969), pp. 241–242] for nilsystems G / Γ<#comment/> G/\Gamma with connected, simply connected G G
    more » « less
  3. Let f : X →<#comment/> Y f: X \to Y be a regular covering of a surface Y Y of finite type with nonempty boundary, with finitely-generated (possibly infinite) deck group G G . We give necessary and sufficient conditions for an integral homology class on X X to admit a representative as a connected component of the preimage of a nonseparating simple closed curve on Y Y , possibly after passing to a “stabilization”, i.e. a G G -equivariant embedding of covering spaces X ↪<#comment/> X + X \hookrightarrow X^+
    more » « less
  4. We formulate and prove a Conner–Floyd isomorphism for the algebraic K-theory of arbitrary qcqs derived schemes. To that end, we study a stable ∞<#comment/> \infty -category of non- A 1 \mathbb {A}^1 -invariant motivic spectra, which turns out to be equivalent to the ∞<#comment/> \infty -category of fundamental motivic spectra satisfying elementary blowup excision, previously introduced by the first and third authors. We prove that this ∞<#comment/> \infty -category satisfies P 1 \mathbb {P}^1 -homotopy invariance and weighted A 1 \mathbb {A}^1 -homotopy invariance, which we use in place of A 1 \mathbb {A}^1 -homotopy invariance to obtain analogues of several key results from A 1 \mathbb {A}^1 -homotopy theory. These allow us in particular to define a universal oriented motivic E ∞<#comment/> \mathbb {E}_\infty -ring spectrum M G L \mathrm {MGL} . We then prove that the algebraic K-theory of a qcqs derived scheme X X can be recovered from its M G L \mathrm {MGL} -cohomology via a Conner–Floyd isomorphism\[ M G L ∗<#comment/> ∗<#comment/> ( X ) ⊗<#comment/> L Z [ β<#comment/> ±<#comment/> 1 ] ≃<#comment/> K ∗<#comment/> ∗<#comment/> ( X ) , \mathrm {MGL}^{**}(X)\otimes _{\mathrm {L}{}}\mathbb {Z}[\beta ^{\pm 1}]\simeq \mathrm {K}{}^{**}(X), \]where L \mathrm {L}{} is the Lazard ring and K p , q ( X ) = K 2 q −<#comment/> p ( X ) \mathrm {K}{}^{p,q}(X)=\mathrm {K}{}_{2q-p}(X) . Finally, we prove a Snaith theorem for the periodized version of M G L \mathrm {MGL}
    more » « less
  5. In this paper we consider which families of finite simple groups G G have the property that for each ϵ<#comment/> > 0 \epsilon > 0 there exists N > 0 N > 0 such that, if | G | ≥<#comment/> N |G| \ge N and S , T S, T are normal subsets of G G with at least ϵ<#comment/> | G | \epsilon |G| elements each, then every non-trivial element of G G is the product of an element of S S and an element of T T . We show that this holds in a strong and effective sense for finite simple groups of Lie type of bounded rank, while it does not hold for alternating groups or groups of the form P S L n ( q ) \mathrm {PSL}_n(q) where q q is fixed and n →<#comment/> ∞<#comment/> n\to \infty . However, in the case S = T S=T and G G alternating this holds with an explicit bound on N N in terms of ϵ<#comment/> \epsilon . Related problems and applications are also discussed. In particular we show that, if w 1 , w 2 w_1, w_2 are non-trivial words, G G is a finite simple group of Lie type of bounded rank, and for g ∈<#comment/> G g \in G , P w 1 ( G ) , w 2 ( G ) ( g ) P_{w_1(G),w_2(G)}(g) denotes the probability that g 1 g 2 = g g_1g_2 = g where g i ∈<#comment/> w i ( G ) g_i \in w_i(G) are chosen uniformly and independently, then, as | G | →<#comment/> ∞<#comment/> |G| \to \infty , the distribution P w 1 ( G ) , w 2 ( G ) P_{w_1(G),w_2(G)} tends to the uniform distribution on G G with respect to the L ∞<#comment/> L^{\infty } norm. 
    more » « less