Lateral movement is a key stage of system compromise used by advanced persistent threats. Detecting it is no simple task. When network host logs are abstracted into discrete temporal graphs, the problem can be reframed as anomalous edge detection in an evolving network. Research in modern deep graph learning techniques has produced many creative and complicated models for this task. However, as is the case in many machine learning fields, the generality of models is of paramount importance for accuracy and scalability during training and inference. In this article, we propose a formalized approach to this problem with a framework we call Euler . It consists of a model-agnostic graph neural network stacked upon a model-agnostic sequence encoding layer such as a recurrent neural network. Models built according to the Euler framework can easily distribute their graph convolutional layers across multiple machines for large performance improvements. Additionally, we demonstrate that Euler -based models are as good, or better, than every state-of-the-art approach to anomalous link detection and prediction that we tested. As anomaly-based intrusion detection systems, our models efficiently identified anomalous connections between entities with high precision and outperformed all other unsupervised techniques for anomalous lateral movement detection. Additionally, we show that as a piece of a larger anomaly detection pipeline, Euler models perform well enough for use in real-world systems. With more advanced, yet still lightweight, alerting mechanisms ingesting the embeddings produced by Euler models, precision is boosted from 0.243, to 0.986 on real-world network traffic.
more »
« less
This content will become publicly available on May 5, 2026
Robust Anomaly Detection with Graph Neural Networks Using Controllability
Anomaly detection in complex domains poses significant challenges due to the need for extensive labeled data and the inherently imbalanced nature of anomalous versus benign samples. Graph-based machine learning models have emerged as a promising solution that combines attribute and relational data to uncover intricate patterns. However, the scarcity of anomalous data exacerbates the challenge, which requires innovative strategies to enhance model learning with limited information. In this paper, we hypothesize that the incorporation of the influence of the nodes, quantified through average controllability, can significantly improve the performance of anomaly detection. We propose two novel approaches to integrate average controllability into graph-based frameworks: (1) using average controllability as an edge weight and (2) encoding it as a one-hot edge attribute vector. Through rigorous evaluation on real-world and synthetic networks with six state-of-the-art baselines, our proposed methods demonstrate improved performance in identifying anomalies, highlighting the critical role of controllability measures in enhancing the performance of graph machine learning models. This work underscores the potential of integrating average controllability as additional metrics to address the challenges of anomaly detection in sparse and imbalanced datasets.
more »
« less
- PAR ID:
- 10626558
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 979-8-3315-2400-5
- Page Range / eLocation ID:
- 888 to 895
- Format(s):
- Medium: X
- Location:
- Santa Clara, CA, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In recent years, deep learning gained proliferating popularity in the cybersecurity application domain, since when being compared to traditional machine learning methods, it usually involves less human efforts, produces better results, and provides better generalizability. However, the imbalanced data issue is very common in cybersecurity, which can substantially deteriorate the performance of the deep learning models. This paper introduces a transfer learning based method to tackle the imbalanced data issue in cybersecurity using return-oriented programming payload detection as a case study. We achieved 0.0290 average false positive rate, 0.9705 average F1 score and 0.9521 average detection rate on 3 different target domain programs using 2 different source domain programs, with 0 benign training data sample in the target domain. The performance improvement compared to the baseline is a trade-off between false positive rate and detection rate. Using our approach, the total number of false positives is reduced by 23.16%, and as a trade-off, the number of detected malicious samples decreases by 0.68%.more » « less
-
DOS-GNN: Dual-Feature Aggregations with Over-Sampling for Class-Imbalanced Fraud Detection On GraphsAs fraudulent activities have shot up manifolds, fraud detection has emerged as a pivotal process in different fields (e.g., e-commerce, online reviews, and social networks). Since interactions among entities provide valuable insights into fraudulent activities, such behaviors can be naturally represented as graph structures, where graph neural networks (GNNs) have been developed as prominent models to boost the efficacy of fraud detection. In graph-based fraud detection, handling imbalanced datasets poses a significant challenge, as the minority class often gets overshadowed, diminishing the performance of conventional GNNs. While oversampling has recently been adapted for imbalanced graphs, it contends with issues such as graph heterophily and noisy edge synthesis. To address these limitations, this paper introduces DOS-GNN, incorporating Dual-feature aggregation with Over-Sampling to advance GNNs for class-imbalanced fraud detection on graphs. This model exploits feature separation and dual-feature aggregation to mitigate the impact of heterophily and acquire refined node embeddings that facilitate fraud oversampling to balance class distribution without the need for edge synthesis. Extensive experiments on four large and real-world fraud datasets demonstrate that DOS-GNN can significantly improve fraud detection performance on graphs with different imbalance ratios and homophily ratios, outperforming state-of-the-art GNN models.more » « less
-
Abstract Deep generative learning cannot only be used for generating new data with statistical characteristics derived from input data but also for anomaly detection, by separating nominal and anomalous instances based on their reconstruction quality. In this paper, we explore the performance of three unsupervised deep generative models—variational autoencoders (VAEs) with Gaussian, Bernoulli, and Boltzmann priors—in detecting anomalies in multivariate time series of commercial-flight operations. We created two VAE models with discrete latent variables (DVAEs), one with a factorized Bernoulli prior and one with a restricted Boltzmann machine (RBM) with novel positive-phase architecture as prior, because of the demand for discrete-variable models in machine-learning applications and because the integration of quantum devices based on two-level quantum systems requires such models. To the best of our knowledge, our work is the first that applies DVAE models to anomaly-detection tasks in the aerospace field. The DVAE with RBM prior, using a relatively simple—and classically or quantum-mechanically enhanceable—sampling technique for the evolution of the RBM’s negative phase, performed better in detecting anomalies than the Bernoulli DVAE and on par with the Gaussian model, which has a continuous latent space. The transfer of a model to an unseen dataset with the same anomaly but without re-tuning of hyperparameters or re-training noticeably impaired anomaly-detection performance, but performance could be improved by post-training on the new dataset. The RBM model was robust to change of anomaly type and phase of flight during which the anomaly occurred. Our studies demonstrate the competitiveness of a discrete deep generative model with its Gaussian counterpart on anomaly-detection problems. Moreover, the DVAE model with RBM prior can be easily integrated with quantum sampling by outsourcing its generative process to measurements of quantum states obtained from a quantum annealer or gate-model device.more » « less
-
Graph-based anomaly detection is pivotal in diverse security applications, such as fraud detection in transaction networks and intrusion detection for network traffic. Standard approaches, including Graph Neural Networks (GNNs), often struggle to generalize across shifting data distributions. For instance, we observe that a real-world eBay transaction dataset revealed an over 50% decline in fraud detection accuracy when adding data from only a single new day to the graph due to data distribution shifts. This highlights a critical vulnerability in purely data-driven approaches. Meanwhile, real-world domain knowledge, such as "simultaneous transactions in two locations are suspicious," is more stable and a common existing component of real-world detection strategies. To explicitly integrate such knowledge into data-driven models such as GCNs, we propose KnowGraph, which integrates domain knowledge with data-driven learning for enhanced graph-based anomaly detection. KnowGraph comprises two principal components: (1) a statistical learning component that utilizes a main model for the overarching detection task, augmented by multiple specialized knowledge models that predict domain-specific semantic entities; (2) a reasoning component that employs probabilistic graphical models to execute logical inferences based on model outputs, encoding domain knowledge through weighted first-order logic formulas. In addition, KnowGraph has leveraged the Predictability-Computability-Stability (PCS) framework for veridical data science to estimate and mitigate prediction uncertainties. Empirically, KnowGraph has been rigorously evaluated on two significant real-world scenarios: collusion detection in the online marketplace eBay and intrusion detection within enterprise networks. Extensive experiments on these large-scale real-world datasets show that KnowGraph consistently outperforms state-of-the-art baselines in both transductive and inductive settings, achieving substantial gains in average precision when generalizing to completely unseen test graphs. Further ablation studies demonstrate the effectiveness of the proposed reasoning component in improving detection performance, especially under extreme class imbalance. These results highlight the potential of integrating domain knowledge into data-driven models for high-stakes, graph-based security applications.more » « less
An official website of the United States government
