Robots present an innovative solution to the construction industry’s challenges, including safety concerns, skilled worker shortages, and productivity issues. Successfully collaborating with robots requires new competencies to ensure safety, smooth interaction, and accelerated adoption of robotic technologies. However, limited research exists on the specific competencies needed for human—robot collaboration in construction. Moreover, the perspectives of construction industry professionals on these competencies remain underexplored. This study examines the perceptions of construction industry professionals regarding the knowledge, skills, and abilities necessary for the effective implementation of human—robot collaboration in construction. A two-round Delphi survey was conducted with expert panel members from the construction industry to assess their views on the competencies for human—robot collaboration. The results reveal that the most critical competencies include knowledge areas such as human—robot interface, construction robot applications, human—robot collaboration safety and standards, task planning and robot control system; skills such as task planning, safety management, technical expertise, human—robot interface, and communication; and abilities such as safety awareness, continuous learning, problemsolving, critical thinking, and spatial awareness. This study contributes to knowledge by identifying the most significant competencies for human—robot collaboration in construction and highlighting their relative importance. These competencies could inform the design of educational and training programs and facilitate the integration of robotic technologies in construction. The findings also provide a foundation for future research to further explore and enhance these competencies, ultimately supporting safer, more efficient, and more productive construction practices.
more »
« less
This content will become publicly available on December 1, 2026
Competencies for human–robot collaboration in the construction industry: perspectives from academia and industry
Abstract Robotic automation in construction has created the need for new competencies that will enable the workforce to engage with robots safely and effectively. However, differing perceptions between industry professionals and academia make aligning academic programs with industry needs challenging. This study evaluates these perceptions to guide the design of HRC training programs. A three-round Delphi study was conducted separately with panels of industry professionals and academic experts to assess their views on HRC competencies in construction. The findings revealed that both panels identified human–robot interfaces, HRC safety and standards, robot control systems, and construction robot applications as the top five HRC knowledge areas. Industry professionals also emphasized task planning knowledge, while academic experts focused on HRC ethics. Key HRC skills include effective communication, safety management, technical proficiency, and compliance with regulations and standards, with industry professionals prioritizing proficiency in task planning and academics emphasizing human–robot interface proficiency. Both expert panels prioritized teamwork, continuous learning, problem-solving, communication, and adaptability as top-rated HRC abilities. This study contributes to knowledge by defining key HRC competencies and identifying differences in priorities between industry and academia. These insights can guide the development of academic curricula that better align with industry needs, supporting the creation of training programs that equip the workforce with the competencies required for safe and effective robotic collaboration. The study also promotes collaboration between industry and academia, fostering innovation in HRC and robotics in construction. Future research directions are proposed to explore innovative training methods to equip the future workforce with HRC competencies.
more »
« less
- Award ID(s):
- 2402008
- PAR ID:
- 10626780
- Publisher / Repository:
- Springer Nature Singapore
- Date Published:
- Journal Name:
- Construction Robotics
- Volume:
- 9
- Issue:
- 2
- ISSN:
- 2509-811X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Model‐based systems engineering (MBSE) is rapidly gaining popularity among U.S. industries. Though industry practitioners and academic researchers have identified several advantages in transitioning to MBSE, several adoption challenges of MBSE in industries, such as insufficient tool knowledge, lack of skilled personnel, and resistance in organizations toward a shift to MBSE, are observed. Attesting to the challenges in industry adoption of MBSE, a previous research study by the authors characterized the adoption challenges as tools‐based, knowledge‐based, cultural, political, and cost‐related, and customer understanding and acceptance of MBSE practices. This study is motivated to explore further and address the challenge of low MBSE tool knowledge and lack of skilled personnel with MBSE knowledge for industry adoption. This paper presents a two‐phased research approach framed by an overarching question of the extent to which the MBSE academic curriculum is aligned with industry workforce requirements. In Phase 1 of the study, we survey industry professionals from Defense, Aerospace, Automotive, and other industry clusters to identify MBSE tools, languages, and concepts preferred by industry professionals in a candidate for hire. This is followed by Phase 2 of the survey targeted at academic institutions with Systems and MBSE programs to analyze the extent to which MBSE curricula reflect industry workforce hiring requirements. Further, we also identify the challenges reported in academic institutions in training the Workforce on MBSE. The contributions of this paper are two‐fold: providing a pathway for academic institutions to align their curricula to MBSE industry workforce requirements and triggering discussion in the broader MBSE community to identify strategies for addressing MBSE adoption challenges and training future model‐based systems engineers.more » « less
-
null (Ed.)The fast-growing adoption of sensing technologies in the construction industry has necessitated a demand for workforce with technical skills. This study explores the current state of sensing technologies in the industry and sensing technology education in construction engineering and management programs. The study investigates the agreeability of industry and academia’s perceptions of the integration of sensing technologies in construction engineering and management curricula. The study employs online surveys to capture industry and instructor perceptions of the skills required of graduating construction engineering and management students and the extent of sensing technology education respectively. Comparison of the survey responses reveals differences between sensing technologies and applications deployed in the industry and those taught in construction engineering and management programs. While reinforcing the need for technical skills in the industry, results provide highlights to well-structured sensing technology courses based on required competencies to prepare students for a relevant and successful career in the industry.more » « less
-
This study aimed to investigate the key technical and psychological factors that impact the architecture, engineering, and construction (AEC) professionals’ trust in collaborative robots (cobots) powered by artificial intelligence (AI). This study seeks to address the critical knowledge gaps surrounding the establishment and reinforcement of trust among AEC professionals in their collaboration with AI-powered cobots. In the context of the construction industry, where the complexities of tasks often necessitate human–robot teamwork, understanding the technical and psychological factors influencing trust is paramount. Such trust dynamics play a pivotal role in determining the effectiveness of human–robot collaboration on construction sites. This research employed a nationwide survey of 600 AEC industry practitioners to shed light on these influential factors, providing valuable insights to calibrate trust levels and facilitate the seamless integration of AI-powered cobots into the AEC industry. Additionally, it aimed to gather insights into opportunities for promoting the adoption, cultivation, and training of a skilled workforce to effectively leverage this technology. A structural equation modeling (SEM) analysis revealed that safety and reliability are significant factors for the adoption of AI-powered cobots in construction. Fear of being replaced resulting from the use of cobots can have a substantial effect on the mental health of the affected workers. A lower error rate in jobs involving cobots, safety measurements, and security of data collected by cobots from jobsites significantly impact reliability, and the transparency of cobots’ inner workings can benefit accuracy, robustness, security, privacy, and communication and result in higher levels of automation, all of which demonstrated as contributors to trust. The study’s findings provide critical insights into the perceptions and experiences of AEC professionals toward adoption of cobots in construction and help project teams determine the adoption approach that aligns with the company’s goals workers’ welfare.more » « less
-
With increasing demands for high performance in structural systems, Smart Structures Technologies (SST) is receiving considerable attention as it has the potential to transform many fields in engineering, including civil, mechanical, aerospace, and geotechnical engineering. Both the academic and industrial worlds are seeking ways to utilize SST, however, there is a significant gap between the engineering science in academia and engineering practice in the industry. To respond to this challenge, San Francisco State University and the University of South Carolina collaborated with industrial partners to establish a Research Experiences for Undergraduates (REU) Site program, focusing on academia-industry collaborations in SST. This REU program intends to train undergraduate students to serve as the catalysts to facilitate the research infusion between academic and industrial partners. This student-driven joint venture between academia and industry is expected to establish a virtuous circle for knowledge exchange and contribute to advancing fundamental research and implementation of SST. The program features: formal training, workshops, and supplemental activities in the conduct of research in academia and industry; innovative research experience through engagement in projects with scientific and practical merits in both academic and industrial environments; experience in conducting laboratory experiments; and opportunities to present the research outcomes to the broader community at professional settings. This REU program provides engineering undergraduate students with unique research experience in both academic and industrial settings through cooperative research projects. Experiencing research in both worlds is expected to help students transition from a relatively dependent status to an independent status as their competence level increases. The joint efforts among two institutions and industry partners provide the project team with extensive access to valuable resources, such as expertise to offer a wider-range of informative training workshops, advanced equipment, valuable data sets, experienced mentors for the undergraduate researchers, and professional connections, that would facilitate a meaningful REU experience. Recruitment of participants targeted 20 collaborating minority and primarily undergraduate institutions (15 of them are Hispanic-Serving Institutions, HSI) with limited science, technology, engineering, and mathematics (STEM) research capabilities. The model developed through this program may help to exemplify the establishment of a sustainable collaboration model between academia and industry that helps address the nation's need for mature, independent, informed, and globally competitive STEM professionals and could be adapted to other disciplines. In this paper, the details of the first-year program are described. The challenges and lessons-learned on the collaboration between the two participating universities, communications with industrial partners, recruitment of the students, set up of the evaluation plans, and development and implementation of the program are discussed. The preliminary evaluation results and recommendations are also shared.more » « less
An official website of the United States government
