skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: AeroSense: Sensing Aerosol Emissions from Indoor Human Activities
The types of human activities occupants are engaged in within indoor spaces significantly contribute to the spread of airborne diseases through emitting aerosol particles. Today, ubiquitous computing technologies can inform users of common atmosphere pollutants for indoor air quality. However, they remain uninformed of the rate of aerosol generated directly from human respiratory activities, a fundamental parameter impacting the risk of airborne transmission. In this paper, we present AeroSense, a novel privacy-preserving approach using audio sensing to accurately predict the rate of aerosol generated from detecting the kinds of human respiratory activities and determining the loudness of these activities. Our system adopts a privacy-first as a key design choice; thus, it only extracts audio features that cannot be reconstructed into human audible signals using two omnidirectional microphone arrays. We employ a combination of binary classifiers using the Random Forest algorithm to detect simultaneous occurrences of activities with an average recall of 85%. It determines the level of all detected activities by estimating the distance between the microphone and the activity source. This level estimation technique yields an average of 7.74% error. Additionally, we developed a lightweight mask detection classifier to detect mask-wearing, which yields a recall score of 75%. These intermediary outputs are critical predictors needed for AeroSense to estimate the amounts of aerosol generated from an active human source. Our model to predict aerosol is a Random Forest regression model, which yields 2.34 MSE and 0.73 r2 value. We demonstrate the accuracy of AeroSense by validating our results in a cleanroom setup and using advanced microbiological technology. We present results on the efficacy of AeroSense in natural settings through controlled and in-the-wild experiments. The ability to estimate aerosol emissions from detected human activities is part of a more extensive indoor air system integration, which can capture the rate of aerosol dissipation and inform users of airborne transmission risks in real time.  more » « less
Award ID(s):
2211302 2211888 2105494 2213636
PAR ID:
10627061
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Volume:
8
Issue:
2
ISSN:
2474-9567
Page Range / eLocation ID:
1 to 30
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The COVID-19 pandemic has revealed critical knowledge gaps in our understanding of and a need to update the traditional view of transmission pathways for respiratory viruses. The long-standing definitions of droplet and airborne transmission do not account for the mechanisms by which virus-laden respiratory droplets and aerosols travel through the air and lead to infection. In this Review, we discuss current evidence regarding the transmission of respiratory viruses by aerosols—how they are generated, transported, and deposited, as well as the factors affecting the relative contributions of droplet-spray deposition versus aerosol inhalation as modes of transmission. Improved understanding of aerosol transmission brought about by studies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection requires a reevaluation of the major transmission pathways for other respiratory viruses, which will allow better-informed controls to reduce airborne transmission. 
    more » « less
  2. The use of audio and video modalities for Human Activity Recognition (HAR) is common, given the richness of the data and the availability of pre-trained ML models using a large corpus of labeled training data. However, audio and video sensors also lead to significant consumer privacy concerns. Researchers have thus explored alternate modalities that are less privacy-invasive such as mmWave doppler radars, IMUs, motion sensors. However, the key limitation of these approaches is that most of them do not readily generalize across environments and require significant in-situ training data. Recent work has proposed cross-modality transfer learning approaches to alleviate the lack of trained labeled data with some success. In this paper, we generalize this concept to create a novel system called VAX (Video/Audio to 'X'), where training labels acquired from existing Video/Audio ML models are used to train ML models for a wide range of 'X' privacy-sensitive sensors. Notably, in VAX, once the ML models for the privacy-sensitive sensors are trained, with little to no user involvement, the Audio/Video sensors can be removed altogether to protect the user's privacy better. We built and deployed VAX in ten participants' homes while they performed 17 common activities of daily living. Our evaluation results show that after training, VAX can use its onboard camera and microphone to detect approximately 15 out of 17 activities with an average accuracy of 90%. For these activities that can be detected using a camera and a microphone, VAX trains a per-home model for the privacy-preserving sensors. These models (average accuracy = 84%) require no in-situ user input. In addition, when VAX is augmented with just one labeled instance for the activities not detected by the VAX A/V pipeline (~2 out of 17), it can detect all 17 activities with an average accuracy of 84%. Our results show that VAX is significantly better than a baseline supervised-learning approach of using one labeled instance per activity in each home (average accuracy of 79%) since VAX reduces the user burden of providing activity labels by 8x (~2 labels vs. 17 labels). 
    more » « less
  3. Abstract Audio-based sensing enables fine-grained human activity detection, such as sensing hand gestures and contact-free estimation of the breathing rate. A passive adversary, equipped with microphones, can leverage the ongoing sensing to infer private information about individuals. Further, with multiple microphones, a beamforming-capable adversary can defeat the previously-proposed privacy protection obfuscation techniques. Such an adversary can isolate the obfuscation signal and cancel it, even when situated behind a wall. AudioSentry is the first to address the privacy problem in audio sensing by protecting the users against a multi-microphone adversary. It utilizes the commodity and audio-capable devices, already available in the user’s environment, to form a distributed obfuscator array. AudioSentry packs a novel technique to carefully generate obfuscation beams in different directions, preventing the multi-microphone adversary from canceling the obfuscation signal. AudioSentry follows by a dynamic channel estimation scheme to preserve authorized sensing under obfuscation. AudioSentry offers the advantages of being practical to deploy and effective against an adversary with a large number of microphones. Our extensive evaluations with commodity devices show that protects the user’s privacy against a 16-microphone adversary with only four commodity obfuscators, regardless of the adversary’s position. AudioSentry provides its privacy-preserving features with little overhead on the authorized sensor. 
    more » « less
  4. Internet-of-things (IoT) devices (e.g., micro camera and microphone) are usually small form factor, low-cost, and low-power, which makes them easy to conceal and deploy in the indoor environment to spy on people for human private information such as location and indoor activities. As a result, these IoT devices introduce a great privacy and ethical threat. Therefore, it is important to reveal these concealed IoT devices in the indoor environment for human privacy protection. This paper presents RFScan, a system that can passively detect, fingerprint, and localize diverse concealed IoT devices in the indoor environment by sensing their unintentional electromagnetic emanations. However, sensing these emanations is challenging due to the weak emanation strength and the interference from the ambient wireless communication signals. To this end, we boost the emanation strength through the non-coherent averaging based on the emanation signal's characteristics and design a novel suppression algorithm to mitigate interference from the wireless communication signals. We further profile emanations across frequency and time that act as the emanation source's unique signature and customize a deep neural network architecture to fingerprint the emanation sources. Furthermore, we can localize the emanation source with an angle-of-arrival (AoA) based triangulation approach. Our experimental results demonstrate the efficiency of the IoT devices' detection, fingerprinting, and localization across different indoor environments. 
    more » « less
  5. Surface cleaning using commercial disinfectants, which has recently increased during the coronavirus disease 2019 pandemic, can generate secondary indoor pollutants both in gas and aerosol phases. It can also affect indoor air quality and health, especially for workers repeatedly exposed to disinfectants. Here, we cleaned the floor of a mechanically ventilated office room using a commercial cleaner while concurrently measuring gas-phase precursors, oxidants, radicals, secondary oxidation products, and aerosols in real time; these were detected within minutes after cleaner application. During cleaning, indoor monoterpene concentrations exceeded outdoor concentrations by two orders of magnitude, increasing the rate of ozonolysis under low (<10 ppb) ozone levels. High number concentrations of freshly nucleated sub–10-nm particles (≥105 cm−3) resulted in respiratory tract deposited dose rates comparable to or exceeding that of inhalation of vehicle-associated aerosols. 
    more » « less