Abstract Conventional dialyzer membranes typically comprise of unevenly distributed polydisperse, tortuous, rough pores, embedded in relatively thick ≈20–50 µm polymer layers wherein separation occurs via size exclusion as well as differences in diffusivity of the permeating species. However, transport in such polymeric pores is increasingly hindered as the molecule size approaches the pore dimension, resulting in significant retention of undesirable middle molecules (≥15–60 kDa) and uremic toxins. Enhanced removal of middle molecules is usually accompanied by high albumin loss (≈66 kDa) causing hypoalbuminemia. Here, the scalable bottom‐up fabrication of wafer‐scale carbon nanotube (CNT) membranes with highly aligned, low‐friction, straight‐channels/capillaries and narrow pore‐diameter distributions (≈0.5–4.5 nm) is demonstrated, to overcome persistent challenges in hemofiltration/hemodialysis. Using fluorescein isothiocyanate (FITC)‐Ficoll 70 and albumin in phosphate buffered saline (PBS) as well as in bovine blood plasma, it is shown that CNT membranes can allow for significantly higher hydraulic permeability (more than an order of magnitude when normalized to pore area) than commercial high‐flux hemofiltration/hemodialysis membranes (HF 400), as well as greatly enhance removal of middle molecules while maintaining comparable albumin retention. These findings are rationalized via an N‐pore transport model that highlights the critical role of molecular flexing and deformation during size‐selective transport within nanoscale confinements of the CNTs. The unique transport characteristics of CNTs coupled with size‐exclusion and wafer‐scale fabrication offer transformative advances for hemofiltration, and the obtained insight into molecular transport can aid advancements in several other bio‐systems/applications beyond hemofiltration/hemodialysis. 
                        more » 
                        « less   
                    This content will become publicly available on December 1, 2025
                            
                            Fabrication of model ultrafiltration membranes with uniform, high aspect ratio pores
                        
                    
    
            In this manuscript, we report the facile fabrication of large-area model membranes with highly uniform and high aspect ratio pores with diameters <20 nm. These membranes are useful for fundamental investigations of separation by size exclusion in the ultrafiltration regime, where species to be separated from solution have dimensions of 1–100 nm. Such investigations require membranes with narrow pores and high aspect ratios such that the Hagen–Poiseuille equation is followed, enabling well-known models such as the hindered transport model to be evaluated and other affecting factors to be ignored. We demonstrate that the sub-20 nm pores in the membrane are of sufficiently high aspect ratio such that water flux through the membrane is consistent with the Hagen–Poiseuille equation. The fabrication relies on self-assembling block copolymers to form uniform, densely packed patterns with sub-20 nm resolution, sequential infiltration synthesis to convert the block copolymer in situ into a mask with adequate contrast to etch pores with an aspect ratio >5, and low-resolution photolithography to transfer the pattern over a large area into a silicon nitride membrane. Model membranes with narrow pore-size distribution fabricated in this way provide the means to investigate parameters that impact size-selective ultrafiltration separations such as the relationships between solute or particle size and pore size, their distributions, and rejection profiles, and, therefore, test the validity or limits of separation models. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2117896
- PAR ID:
- 10627256
- Publisher / Repository:
- AVS
- Date Published:
- Journal Name:
- Journal of Vacuum Science & Technology B
- Volume:
- 42
- Issue:
- 6
- ISSN:
- 2166-2746
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The separation of oil from water and filtration of aqueous solutions and dispersions are critical issues in the processing of waste and contaminated water treatment. Membrane-based technology has been proven as an effective method for the separation of oil from water. In this research, novel vertical nanopores membrane, via oriented cylindrical block copolymer (BCP) films, suitable for oil/water filtration has been designed, fabricated and tested. We used a ∼100 nm thick model poly(styrene- block -methymethacrylate) (PS- b -PMMA) BCP as the active top nanofiltration layer, processed using a roll-to-roll (R2R) method of cold zone annealing (CZA) to obtain vertical orientation, followed by ultraviolet (UV) irradiation selective etch of PMMA cylinders to form vertically oriented nanopores as a novel feature compared to meandering nanopores in other reported BCP systems. The cylindrical nanochannels are hydrophilic, and have a uniform pore size (∼23 nm), a narrow pore size distribution and a high nanopore density (∼420 per sq. micron). The bottom supporting layer is a conventional microporous polyethersulfone (PES) membrane. The created asymmetric membrane is demonstrated to be effective for oil/water extraction with a modestly high throughput rate comparable to other RO/NF membranes. The molecular weight dependent filtration of a water soluble polymer, PEO, demonstrates the broader applications of such membranes.more » « less
- 
            Abstract Separating molecules or ions with sub-Angstrom scale precision is important but technically challenging. Achieving such a precise separation using membranes requires Angstrom scale pores with a high level of pore size uniformity. Herein, we demonstrate that precise solute-solute separation can be achieved using polyamide membranes formed via surfactant-assembly regulated interfacial polymerization (SARIP). The dynamic, self-assembled network of surfactants facilitates faster and more homogeneous diffusion of amine monomers across the water/hexane interface during interfacial polymerization, thereby forming a polyamide active layer with more uniform sub-nanometre pores compared to those formed via conventional interfacial polymerization. The polyamide membrane formed by SARIP exhibits highly size-dependent sieving of solutes, yielding a step-wise transition from low rejection to near-perfect rejection over a solute size range smaller than half Angstrom. SARIP represents an approach for the scalable fabrication of ultra-selective membranes with uniform nanopores for precise separation of ions and small solutes.more » « less
- 
            Two-dimensional, graphene-based materials have attracted great attention as a new membrane building block, primarily owing to their potential to make the thinnest possible membranes and thus provide the highest permeance for effective sieving, assuming comparable porosity to conventional membranes and uniform molecular-sized pores. However, a great challenge exists to fabricate large-area, single-layered graphene or graphene oxide (GO) membranes that have negligible undesired transport pathways, such as grain boundaries, tears, and cracks. Therefore, model systems, such as a single flake or nanochannels between graphene or GO flakes, have been studied via both simulations and experiments to explore the transport mechanisms and separation potential of graphene-based membranes. This article critically reviews literature related to single- to few-layered graphene and GO membranes, from material synthesis and characteristics, fundamental membrane structures, and transport mechanisms to potential separation applications. Knowledge gaps between science and engineering in this new field and future opportunities for practical separation applications are also discussed.more » « less
- 
            Solute transport in nanofiltration (NF) membrane systems is described with the Donnan Steric Pore Model with Dielectric Exclusion (DSPM-DE), which couples size- and charge-based solute partitioning mechanisms into and out of the membrane pores with flow through the pore, as described by the Extended Nernst-Planck equation. If membrane structural and chemical characteristics are well defined, the DSPM-DE can theoretically be used to identify solute rejection mechanisms, predict NF performance, and guide membrane design. However, the presence of additional separation mechanisms, like adsorption, and the heterogeneous, convoluted characteristics of traditional NF membranes challenge these goals. In this work, we apply covalent organic frameworks (COFs) as model NF materials to demonstrate control over the steric and non-steric partitioning and transport mechanisms in NF. We experimentally isolate and quantify the steric and non-steric contributions to solute partitioning and transport in NF via application of the DSPM-DE to COF membranes fabricated with tailored pore sizes, thicknesses, and charge properties. We also demonstrate enhanced non-steric solute rejection achieved through changes to COF membrane structure and chemistry, and we highlight the significant impact of adsorption on measured solute rejection by COF membranes.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
