skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 12, 2026

Title: Quality of Experience Enhancement in Wireless Metaverse: A Resource Optimization Scheme
The rapid advancement of metaverse applications in wireless environments necessitates efficient resource management to enhance Quality of Experience (QoE). This paper presents a novel framework for optimizing wireless resource allocation within the metaverse to optimize QoE using convex optimization and matching theory. We formulate a QoE optimization problem considering packet error rate (PER) and immersive experience. Our problem also enables us to trade off between immersive experience and PER while computing QoE. The formulated problem is a mixed-integer non-linear programming (MINLP) problem, which is addressed through decomposition, convex optimization, matching theory, and block successive upper-bound minimization (BSUM). Specifically, for a solution, our proposed model integrates matching theory, BSUM, and convex optimization to optimize the association, transmit power allocation, and resource allocation. Finally, numerical results are provided.  more » « less
Award ID(s):
2324915 2152357
PAR ID:
10627899
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3315-0887-6
Page Range / eLocation ID:
1656 to 1660
Format(s):
Medium: X
Location:
Abu Dhabi, United Arab Emirates
Sponsoring Org:
National Science Foundation
More Like this
  1. Wireless data traffic, especially video traffic, continues to increase at a rapid rate. Innovative network architectures and protocols are needed to improve the efficiency of data delivery and the quality of experience (QoE) of mobile users. Mobile edge computing (MEC) is a new paradigm that integrates computing capabilities at the edge of the wireless network. This paper presents a computation-capable and programmable wireless access network architecture to enable more efficient and robust video content delivery based on the MEC concept. It incorporates in-network data processing and communications under a unified software-defined networking platform. To address the multiple resource management challenges that arise in exploiting such integration, we propose a framework to optimize the QoE for multiple video streams, subject to wireless transmission capacity and in-network computation constraints. We then propose two simplified algorithms for resource allocation. The evaluation results demonstrate the benefits of the proposed algorithms for the optimization of video content delivery. 
    more » « less
  2. Network quality-of-service (QoS) does not always translate to user quality-of-experience (QoE). Consequently, knowledge of user QoE is desirable in several scenarios that have traditionally operated on QoS information. Examples include traffic management by ISPs and resource allocation by the operating system. But today these systems lack ways to measure user QoE. To help address this problem, we propose offline generation of per-app models mapping app-independent QoS metrics to app-specific QoE metrics. This enables any entity that can observe an app's network traffic-including ISPs and access points-to infer the app's QoE. We describe how to generate such models for many diverse apps with significantly different QoE metrics. We generate models for common user interactions of 60 popular apps. We then demonstrate the utility of these models by implementing a QoE-aware traffic management framework and evaluate it on a WiFi access point. Our approach successfully improves QoE metrics that reflect user-perceived performance. First, we demonstrate that prioritizing traffic for latency-sensitive apps can improve responsiveness and video frame rate, by 46% and 115%, respectively. Second, we show that a novel QoE-aware bandwidth allocation scheme for bandwidth-intensive apps can improve average video bitrate for multiple users by up to 23%. 
    more » « less
  3. Wi-Fi is an integral part of today's Internet infrastructure, enabling a diverse range of applications and services. Prior approaches to Wi-Fi resource allocation optimized Quality of Service (QoS) metrics, which often do not accurately reflect the user's Quality of Experience (QoE). To address the gap between QoS and QoE, we introduce Maestro, an adaptive method that formulates the Wi-Fi resource allocation problem as a partially observable Markov decision process (PO-MDP) to maximize the overall system QoE and QoE fairness. Maestro estimates QoE without using any application or client data; instead, it treats them as black boxes and leverages temporal dependencies in network telemetry data. Maestro dynamically adjusts policies to handle different classes of applications and variable network conditions. Additionally, Maestro uses a simulation environment for practical training. We evaluate Maestro in an enterprise-level Wi-Fi testbed with a variety of applications, and find that Maestro achieves up to 25× and 78% improvement in QoE and fairness, respectively, compared to the widely-deployed Wi-Fi Multimedia (WMM) policy. Compared to the state-of-the-art learning approach QFlow, Maestro increases QoE by up to 69%. Unlike QFlow which requires modifications to clients, we demonstrate that Maestro improves QoE of popular over-the-top services with unseen traffic without control over clients or servers. 
    more » « less
  4. Virtual Reality (VR), together with the network infrastructure, can provide an interactive and immersive experience for multiple users simultaneously and thus enables collaborative VR applications (e.g., VR-based classroom). However, the satisfactory user experience requires not only high-resolution panoramic image rendering but also extremely low latency and seamless user experience. Besides, the competition for limited network resources (e.g., multiple users share the total limited bandwidth) poses a significant challenge to collaborative user experience, in particular under the wireless network with time-varying capacities. While existing works have tackled some of these challenges, a principled design considering all those factors is still missing. In this paper, we formulate a combinatorial optimization problem to maximize the Quality of Experience (QoE), defined as the linear combination of the quality, the average VR content delivery delay, and variance of the quality over a finite time horizon. In particular, we incorporate the influence of imperfect motion prediction when considering the quality of the perceived contents. However, the optimal solution to this problem can not be implemented in real-time since it relies on future decisions. Then, we decompose the optimization problem into a series of combinatorial optimization in each time slot and develop a low-complexity algorithm that can achieve at least 1/2 of the optimal value. Despite this, the trace-based simulation results reveal that our algorithm performs very close to the optimal offline solution. Furthermore, we implement our proposed algorithm in a practical system with commercial mobile devices and demonstrate its superior performance over state-of-the-art algorithms. We open-source our implementations on https://github.com/SNeC-Lab-PSU/ICDCS-CollaborativeVR. 
    more » « less
  5. Emerging multimedia applications often use a wireless LAN (Wi-Fi) infrastructure to stream content. These Wi-Fi deployments vary vastly in terms of their system configurations. In this paper, we take a step toward characterizing the Quality of Experience (QoE) of volumetric video streaming over an enterprise-grade Wi-Fi network to: (i) understand the impact of Wi-Fi control parameters on user QoE, (ii) analyze the relation between Quality of Service (QoS) metrics of Wi-Fi networks and application QoE, and (iii) compare the QoE of volumetric video streaming to traditional 2D video applications. We find that Wi-Fi configuration parameters such as channel width, radio interface, access category, and priority queues are important for optimizing Wi-Fi networks for streaming immersive videos. 
    more » « less