skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 5, 2026

Title: Minimizing Schrödinger eigenvalues for confining potentials
Abstract We consider the problem of minimizing the lowest eigenvalue of the Schrödinger operator −Δ +Vin L 2 ( R d ) $${L}^{2}({\mathbb{R}}^{d})$$when the integral ∫e−tV dxis given for somet> 0. We show that the eigenvalue is minimal for the harmonic oscillator and derive a quantitative version of the corresponding inequality.  more » « less
Award ID(s):
1954995
PAR ID:
10628075
Author(s) / Creator(s):
Publisher / Repository:
De Gruyter
Date Published:
Journal Name:
Advanced Nonlinear Studies
ISSN:
1536-1365
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In this paper, we establish the existence of a bounded, linear extension operator T : L 2 , p ( E ) L 2 , p ( R 2 ) $$T :{L}^{2,p}\left(E\right)\to {L}^{2,p}\left({\mathbb{R}}^{2}\right)$$when 1 <p< 2 andEis a finite subset of R 2 $${\mathbb{R}}^{2}$$contained in a line. 
    more » « less
  2. Abstract We introduce a distributional Jacobian determinant det D V β ( D v ) \det DV_{\beta}(Dv)in dimension two for the nonlinear complex gradient V β ( D v ) = | D v | β ( v x 1 , v x 2 ) V_{\beta}(Dv)=\lvert Dv\rvert^{\beta}(v_{x_{1}},-v_{x_{2}})for any β > 1 \beta>-1, whenever v W loc 1 , 2 v\in W^{1\smash{,}2}_{\mathrm{loc}}and β | D v | 1 + β W loc 1 , 2 \beta\lvert Dv\rvert^{1+\beta}\in W^{1\smash{,}2}_{\mathrm{loc}}.This is new when β 0 \beta\neq 0.Given any planar ∞-harmonic function 𝑢, we show that such distributional Jacobian determinant det D V β ( D u ) \det DV_{\beta}(Du)is a nonnegative Radon measure with some quantitative local lower and upper bounds.We also give the following two applications. Applying this result with β = 0 \beta=0, we develop an approach to build up a Liouville theorem, which improves that of Savin.Precisely, if 𝑢 is an ∞-harmonic function in the whole R 2 \mathbb{R}^{2}with lim inf R inf c R 1 R B ( 0 , R ) | u ( x ) c | d x < , \liminf_{R\to\infty}\inf_{c\in\mathbb{R}}\frac{1}{R}\barint_{B(0,R)}\lvert u(x)-c\rvert\,dx<\infty,then u = b + a x u=b+a\cdot xfor some b R b\in\mathbb{R}and a R 2 a\in\mathbb{R}^{2}.Denoting by u p u_{p}the 𝑝-harmonic function having the same nonconstant boundary condition as 𝑢, we show that det D V β ( D u p ) det D V β ( D u ) \det DV_{\beta}(Du_{p})\to\det DV_{\beta}(Du)as p p\to\inftyin the weak-⋆ sense in the space of Radon measure.Recall that V β ( D u p ) V_{\beta}(Du_{p})is always quasiregular mappings, but V β ( D u ) V_{\beta}(Du)is not in general. 
    more » « less
  3. Abstract We extend the Calderón–Zygmund theory for nonlocal equations tostrongly coupled system of linear nonlocal equations A s u = f {\mathcal{L}^{s}_{A}u=f}, where the operator A s {\mathcal{L}^{s}_{A}}is formally given by A s u = n A ( x , y ) | x - y | n + 2 s ( x - y ) ( x - y ) | x - y | 2 ( u ( x ) - u ( y ) ) 𝑑 y . \mathcal{L}^{s}_{A}u=\int_{\mathbb{R}^{n}}\frac{A(x,y)}{|x-y|^{n+2s}}\frac{(x-%y)\otimes(x-y)}{|x-y|^{2}}(u(x)-u(y))\,dy. For 0 < s < 1 {0<1}and A : n × n {A:\mathbb{R}^{n}\times\mathbb{R}^{n}\to\mathbb{R}}taken to be symmetric and serving asa variable coefficient for the operator, the system under consideration is the fractional version of the classical Navier–Lamé linearized elasticity system. The study of the coupled system of nonlocal equations is motivated by its appearance in nonlocal mechanics, primarily in peridynamics. Our regularity result states that if A ( , y ) {A(\,\cdot\,,y)}is uniformly Holder continuous and inf x n A ( x , x ) > 0 {\inf_{x\in\mathbb{R}^{n}}A(x,x)>0}, then for f L loc p {f\in L^{p}_{\rm loc}}, for p 2 {p\geq 2}, the solution vector u H loc 2 s - δ , p {u\in H^{2s-\delta,p}_{\rm loc}}for some δ ( 0 , s ) {\delta\in(0,s)}. 
    more » « less
  4. Abstract Let 𝜋 and π \pi^{\prime}be cuspidal automorphic representations of GL ( n ) \mathrm{GL}(n)and GL ( n ) \mathrm{GL}(n^{\prime})with unitary central characters.We establish a new zero-free region for all GL ( 1 ) \mathrm{GL}(1)-twists of the Rankin–Selberg 𝐿-function L ( s , π × π ) L(s,\pi\times\pi^{\prime}), generalizing Siegel’s celebrated work on Dirichlet 𝐿-functions.As an application, we prove the first unconditional Siegel–Walfisz theorem for the Dirichlet coefficients of L ( s , π × π ) / L ( s , π × π ) -L^{\prime}(s,\pi\times\pi^{\prime})/L(s,\pi\times\pi^{\prime}).Also, for n 8 n\leq 8, we extend the region of holomorphy and nonvanishing for the twisted symmetric power 𝐿-functions L ( s , π , Sym n χ ) L(s,\pi,\mathrm{Sym}^{n}\otimes\chi)of any cuspidal automorphic representation of GL ( 2 ) \mathrm{GL}(2). 
    more » « less
  5. Abstract Assuming the Riemann Hypothesis, we study negative moments of the Riemann zeta-function and obtain asymptotic formulas in certain ranges of the shift in ζ ( s ) {\zeta(s)}. For example, integrating | ζ ( 1 2 + α + i t ) | - 2 k {|\zeta(\frac{1}{2}+\alpha+it)|^{-2k}}with respect totfromTto 2 T {2T}, we obtain an asymptotic formula when the shift α is roughly bigger than 1 log T {\frac{1}{\log T}}and k < 1 2 {k<\frac{1}{2}}. We also obtain non-trivial upper bounds for much smaller shifts, as long as log 1 α log log T {\log\frac{1}{\alpha}\ll\log\log T}. This provides partial progress towards a conjecture of Gonek on negative moments of the Riemann zeta-function, and settles the conjecture in certain ranges. As an application, we also obtain an upper bound for the average of the generalized Möbius function. 
    more » « less