The Wilkes and Aurora basins are large, low‐lying sub‐glacial basins that may cause areas of weakness in the overlying East Antarctic ice sheet. Previous work based on ice‐rafted debris (IRD) provenance analyses found evidence for massive iceberg discharges from these areas during the late Miocene and Pliocene. Here we characterize the sediments shed from the inferred areas of weakness along this margin (94°E to 165°E) by measuring40Ar/39Ar ages of 292 individual detrital hornblende grains from eight marine sediment core locations off East Antarctica and Nd isotopic compositions of the bulk fine fraction from the same sediments. We further expand the toolbox for Antarctic IRD provenance analyses by exploring the application of40Ar/39Ar ages of detrital biotites; biotite as an IRD tracer eliminates lithological biases imposed by only analyzing hornblendes and allows for characterization of samples with low IRD concentrations. Our data quadruples the number of detrital40Ar/39Ar ages from this margin of East Antarctica and leads to the following conclusions: (1) Four main sectors between the Ross Sea and Prydz Bay, separated by ice drainage divides, are distinguishable based upon the combination of40Ar/39Ar ages of detrital hornblende and biotite grains and theεNdof the bulk fine fraction; (2)40Ar/39Ar biotite ages can be used as a robust provenance tracer for this part of East Antarctica; and (3) sediments shed from the coastal areas of the Aurora and Wilkes sub‐glacial basins can be clearly distinguished from one another based upon their isotopic fingerprints.
more »
« less
Seismic stratigraphy of the Sabrina Coast shelf, East Antarctica: Early history of dynamic meltwater-rich glaciations
Abstract High-resolution seismic data from the Sabrina Coast continental shelf, East Antarctica, elucidate the Cenozoic evolution of the East Antarctic Ice Sheet. Detailed seismic stratigraphic and facies analysis reveal the Paleogene to earliest Pliocene glacial evolution of the Aurora Basin catchment, including at least 12 glacial expansions across the shelf indicated by erosional surfaces and chaotic acoustic character of strata. Differences in facies composition and seismic architecture reveal several periods of ice-free conditions succeeded by glacial expansions across the shelf. A deep (∼100 m), undulating erosional surface suggests the initial appearance of grounded ice on the shelf. Following the initial ice expansion, the region experienced an interval of open-marine to ice-distal conditions, marked by an up to 200-m-thick sequence of stratified sediments. At least three stacked erosional surfaces reveal major cross-shelf glacial expansions of regional glaciers characterized by deep (up to ∼120 m) channel systems associated with extensive subglacial meltwater. The seismic character of the sediments below the latest Miocene to earliest Pliocene regional unconformity indicates intervals of glacial retreat interrupted by advances of temperate, meltwater-rich glacial ice from the Aurora Basin catchment. Our results document the Paleogene to late Miocene glacial history of this climatically sensitive region of East Antarctica and provide an important paleoenvironmental context for future scientific drilling to constrain the regional climate and timing of Cenozoic glacial variability.
more »
« less
- Award ID(s):
- 1744970
- PAR ID:
- 10628165
- Publisher / Repository:
- GSA
- Date Published:
- Journal Name:
- GSA Bulletin
- Volume:
- 132
- Issue:
- 3-4
- ISSN:
- 0016-7606
- Page Range / eLocation ID:
- 545 to 561
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. Predictions of future sea-level change and ice-sheet stability rely on accurate reconstructions of sea levels for past warm intervals, such as the mid-Pliocene Warm Period (MPWP; 3.264–3.025 Ma). The magnitude of MPWP glacial cycles and the relative contribution of meltwater sources remain uncertain. We explore this issue by modeling processes of glacial isostatic adjustment for a wide range of possible MPWP ice-sheet melt zones, including North America, Greenland, Eurasia, and West Antarctica, as well as the Wilkes Basin, the Aurora Basin, and the embayment of Prydz Bay in East Antarctica. As a case study, we use a series of ice histories together with a suite of viscoelastic Earth models to predict global changes in sea level from the Marine Isotope Stage (MIS) M2 glacial to the MIS KM3 interglacial. At the Whanganui Basin (New Zealand), a location with stratigraphic constraints on Pliocene glacial–interglacial sea-level amplitude, the calculated local-sea-level (LSL) rise is on average ∼ 15 % lower than the associated change in the global mean sea level (GMSL) in the ice-sheet scenarios explored here. In contrast, the calculated LSL rise over the deglaciation from MIS M2 to MIS KM3 at Enewetak Atoll is systematically larger than the GMSL change by 10 %. While no single LSL observation (field site) can provide a unique constraint on the sources of ice melt observed during this period, combinations of observations have the potential to yield a stronger constraint on GMSL change and to narrow the list of possible sources.more » « less
-
Oneida Lake, New York, is the remnant of Glacial Lake Iroquois, a large proglacial lake that delivered fresh water to the Atlantic Ocean during the last deglaciation. The formation of Glacial Lake Iroquois and its subsequent drainage into the Atlantic Ocean via the Mohawk Valley was a significant shift in the routing of Laurentide Ice Sheet meltwater to the east instead of south via the Allegheny or Susquehanna Rivers. Catastrophic drainage of Glacial Lake Iroquois into the Atlantic Ocean via the Champlain Valley is interpreted as the meltwater pulse responsible for the Intra-Allerod cold stadial. Therefore, understanding the evolution of Glacial Lake Iroquois has significant implications for understanding late Pleistocene paleoclimate. High-resolution CHIRP seismic reflection data provides insight into the evolution of Glacial Lake Iroquois and Oneida Lake. Three seismic units image distinct stages of the Oneida Basin. Unit 1 is interpreted as proglacial lake deposits that overlie glacial till. Unit 2 is interpreted as sediments deposited when the Oneida Basin became isolated from Glacial Lake Iroquois and Unit 3 is interpreted as lacustrine sediments of the modern lake. Distally sourced turbidites possibly triggered by seismic activity or ice sheet meltwater pulses are represented as reflection- free acoustic facies that infill topographic lows and range in thickness from ~1–5m within otherwise conformable proglacial lake deposits. Local slump deposits imaged at the boundary between Unit 1 and 2 were likely triggered by the drainage of Glacial Lake Iroquois. Wave cut terraces indicative of a low stand on the upper bounding surface of Unit 2 are likely the result of drier conditions during the Holocene Hypsithermal. Furthermore, preservation of this low stand suggests a rapid rise in lake level, possibly the result of the same transition to a wetter climate responsible for the Nipissing transgression observed in the Laurentian Great lakes.more » « less
-
Abstract Oscillations in ice sheet extent during early and middle Miocene are intermittently preserved in the sedimentary record from the Antarctic continental shelf, with widespread erosion occurring during major ice sheet advances, and open marine deposition during times of ice sheet retreat. Data from seismic reflection surveys and drill sites from Deep Sea Drilling Project Leg 28 and International Ocean Discovery Program Expedition 374, located across the present-day middle continental shelf of the central Ross Sea (Antarctica), indicate the presence of expanded early to middle Miocene sedimentary sections. These include the Miocene climate optimum (MCO ca. 17–14.6 Ma) and the middle Miocene climate transition (MMCT ca. 14.6–13.9 Ma). Here, we correlate drill core records, wireline logs and reflection seismic data to elucidate the depositional architecture of the continental shelf and reconstruct the evolution and variability of dynamic ice sheets in the Ross Sea during the Miocene. Drill-site data are used to constrain seismic isopach maps that document the evolution of different ice sheets and ice caps which influenced sedimentary processes in the Ross Sea through the early to middle Miocene. In the early Miocene, periods of localized advance of the ice margin are revealed by the formation of thick sediment wedges prograding into the basins. At this time, morainal bank complexes are distinguished along the basin margins suggesting sediment supply derived from marine-terminating glaciers. During the MCO, biosiliceous-bearing sediments are regionally mapped within the depocenters of the major sedimentary basin across the Ross Sea, indicative of widespread open marine deposition with reduced glacimarine influence. At the MMCT, a distinct erosive surface is interpreted as representing large-scale marine-based ice sheet advance over most of the Ross Sea paleo-continental shelf. The regional mapping of the seismic stratigraphic architecture and its correlation to drilling data indicate a regional transition through the Miocene from growth of ice caps and inland ice sheets with marine-terminating margins, to widespread marine-based ice sheets extending across the outer continental shelf in the Ross Sea.more » « less
-
Site U1608 (proposed Site MB-06D) was cored at 74°7.6818′N, 60°58.3172′W at 607 meters below sea level (mbsl) on the middle section of the northwest Greenland shelf, west of the Melville Bay Ridge and graben structures formed during Cretaceous rifting (Figure F1; see Figure F4 in the Expedition 400 summary chapter [Knutz et al., 2025b]). The main coring targets are mounded contourite drift deposits of expected Pliocene age associated with Megaunit B (Knutz et al., 2015, 2019; Aubrey et al., 2021) and overlying sediments of Megaunit A, recording the transition into glacigenic deposits of earliest trough mouth fan (TMF) progradation (Figure F2). The expanded interval of Megaunit B, captured at Sites U1606 and U1608, reflects deposition below a major incised escarpment that is at least 500 m tall and extends into disturbed sediment packages interpreted as mass transport deposits (Figure F3). The base of the contourite drift accumulation is defined by Horizon c1 of probable Late Miocene age (Knutz et al., 2015). Site U1608 ends ~100 m above Horizon c1, which at this location is characterized by an erosional unconformity related to the slope instability that is strongly expressed in the seismic record (Figure F3). In the context of the full development of the Melville Bugt TMF, Site U1608 targeted TMF Seismic Unit 1, which records the first advance of the northwestern Greenland ice sheet (GrIS) onto the continental shelf, which is hypothesized to correspond to the Pleistocene/Pliocene boundary (Knutz et al., 2019) (Figures F2, F3). Combined, the cores from middle shelf Sites U1606 and U1608 access archives of ocean and climate conditions presumably much warmer than today that were buried by glacial deposits representing global cooling and expansion of northern hemisphere glaciers. These sites use the dynamic drift morphology to capture different parts of Megaunit B strata to capture high-resolution records of the Pliocene ocean-climate system at high Arctic latitudes.more » « less
An official website of the United States government

