Abstract Wearable recordings of neurophysiological signals captured from the wrist offer enormous potential for seizure monitoring. Yet, data quality remains one of the most challenging factors that impact data reliability. We suggest a combined data quality assessment tool for the evaluation of multimodal wearable data. We analyzed data from patients with epilepsy from four epilepsy centers. Patients wore wristbands recording accelerometry, electrodermal activity, blood volume pulse, and skin temperature. We calculated data completeness and assessed the time the device was worn (on-body), and modality-specific signal quality scores. We included 37,166 h from 632 patients in the inpatient and 90,776 h from 39 patients in the outpatient setting. All modalities were affected by artifacts. Data loss was higher when using data streaming (up to 49% among inpatient cohorts, averaged across respective recordings) as compared to onboard device recording and storage (up to 9%). On-body scores, estimating the percentage of time a device was worn on the body, were consistently high across cohorts (more than 80%). Signal quality of some modalities, based on established indices, was higher at night than during the day. A uniformly reported data quality and multimodal signal quality index is feasible, makes study results more comparable, and contributes to the development of devices and evaluation routines necessary for seizure monitoring. 
                        more » 
                        « less   
                    This content will become publicly available on April 1, 2026
                            
                            Optimizing Sensor Locations for Electrodermal Activity Monitoring Using a Wearable Belt System
                        
                    
    
            Wearable devices for continuous health monitoring in humans are constantly evolving, yet the signal quality may be improved by optimizing electrode placement. While the commonly used locations to measure electrodermal activity (EDA) are at the fingers or the wrist, alternative locations, such as the torso, need to be considered when applying an integrated multimodal approach of concurrently recording multiple bio-signals, such as the monitoring of visceral pain symptoms like those related to irritable bowel syndrome (IBS). This study aims to quantitatively determine the EDA signal quality at four torso locations (mid-chest, upper abdomen, lower back, and mid-back) in comparison to EDA signals recorded from the fingers. Concurrent EDA signals from five body locations were collected from twenty healthy participants as they completed a Stroop Task and a Cold Pressor task that elicited salient autonomic responses. Mean skin conductance (meanSCL), non-specific skin conductance responses (NS.SCRs), and sympathetic response (TVSymp) were derived from the torso EDA signals and compared with signals from the fingers. Notably, TVSymp recorded from the mid-chest location showed significant changes between baseline and Stroop phase, consistent with the TVSymp recorded from the fingers. A high correlation (0.77–0.83) was also identified between TVSymp recorded from the fingers and three torso locations: mid-chest, upper abdomen, and lower back locations. While the fingertips remain the optimal site for EDA measurement, the mid-chest exhibited the strongest potential as an alternative recording site, with the upper abdomen and lower back also demonstrating promising results. These findings suggest that torso-based EDA measurements have the potential to provide reliable measurement of sympathetic neural activities and may be incorporated into a wearable belt system for multimodal monitoring. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1844762
- PAR ID:
- 10628342
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Journal of Sensor and Actuator Networks
- Volume:
- 14
- Issue:
- 2
- ISSN:
- 2224-2708
- Page Range / eLocation ID:
- 31
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We designed and validated two interfaces for physical human-robot interaction that utilize torso motions for hands-free navigation control of riding or remote mobile robots. The Torso-dynamics Estimation System (TES), which consisted of an instrumented seat (Force Sensing Seat, FSS) and a wearable sensor (inertial measurement unit, IMU), was developed to quantify the translational and rotational motions of the torso, respectively. The FSS was constructed from six uniaxial loadcells to output 3D resultant forces and torques, which were used to compute the translational movement of the 2D center of pressure (COP) under the seated user. Two versions of the FSS (Gen 1.0 and 2.0) with different loadcell layouts, materials, and manufacturing methods were developed to showcase the versatility of the FSS design and construction. Both FSS versions utilized low-cost components and a simple calibration protocol to correct for dimensional inaccuracies. The IMU, attached on the user’s upper chest, used a proprietary algorithm to compute the 3D torso angles without relying heavily on magnetometers to minimize errors from electromagnetic noises. A validation study was performed on eight test subjects (six able-bodied users and two manual wheelchair users with reduced torso range of motion) to validate TES estimations by comparing them to data collected on a research-grade force plate and motion capture system. TES readings displayed high accuracy (average RMSE of 3D forces, 3D torques, 2D COP, and torso angles were well less than maximum limits of 5N, 5Nm, 10mm, and 6˚, respectively).more » « less
- 
            Introduction:Seismocardiography (SCG) - measurements of cardiovascular-induced vibrations on the chest - has shown potential for providing clinical information for cardiac conditions. SCG is conventionally recorded by an accelerometer attached to a single point on chest. Recent research suggests multichannel SCG (mSCG) - measurements from multiple chest locations - can provide extra and more accurate clinical information. Current mSCG methods are limited to accelerometer arrays, laser Doppler vibrometry, and airborne ultrasound that are either costly, difficult for inexperienced users, or need bulky equipment, thereby impeding their use beyond research or clinical settings. Hypothesis:mSCG signals can be accurately estimated from tiny chest movements in chest videos recorded by ordinary cameras, e.g., those in smartphones. Methods:We enrolled 10 subjects (sbjs) with no history of CVDs (21.7 ± 1.7 years, 40% women). ECG and chest video of sbjs were recorded at rest for 15 sec during breath hold at the end of inhalation followed by another 15 sec recording during breath hold at the end of exhalation. We developed an AI-powered mobile app to record the chest videos and convert them to 0-30 Hz mSCG in right-to-left (RL) and head-to-foot (HF) directions (Fig 1a). Heart rate (HR) based on ECG RR interval and mSCG was measured and compared. Results:HR estimated from mSCG in both RL and HF directions had a good agreement with ECG-based HR using Bland-Altman analysis [RL: bias = 1.4 bpm, 95% CI = 5.6 bpm; HF: bias = 0.8 bpm, 95% CI = 6.2 bpm (Fig 1b)]. High-quality mSCG and ECG measurements were obtained for all sbjs. Conclusion:Clinically relevant information can be accurately extracted from chest videos using our novel, contactless, AI-based method. Given that the vast majority of Americans have access to a camera phone, future developments of this method may provide new means of remote and accessible cardiac monitoring.more » « less
- 
            Abstract Seismocardiography (SCG) is a technique that non-invasively measures the chest wall’s local vibrations caused by the heart’s mechanical activity. Traditionally, SCG signals have been recorded using accelerometers placed at a single location on the chest wall. This study presents an innovative, cost-effective SCG method that utilizes standard smartphone videos to capture data from multiple chest locations. The analysis of vibrations from multiple points can offer a more thorough understanding of the heart’s mechanical activity compared to signals obtained solely from a single chest location. Our approach employs computer vision and deep learning techniques to extract and improve the resolution of multichannel SCG maps obtained by video capture of chest movement. We attached a grid of patterned stickers to the chest surface and recorded videos of chest movements during different respiratory phases. Using a deep learning-based object detector and a template tracking method, we tracked the stickers across video frames and extracted the corresponding SCG signals from sticker displacements. We also developed a robust algorithm to estimate heart rate (HR) from these chest videos and identify the optimal chest location for HR estimation. The method was tested on 28 chest videos captured from 14 healthy participants. The results demonstrated that our method effectively extracted multichannel SCG maps and enhanced their resolution with a mean squared error of 0.1078 and 0.0418 for right-to-left and head-to-foot SCG signals, respectively. We observed intersubject chest vibration patterns corresponding to cardiac events including opening and closure of the heart valves. Moreover, our algorithm accurately estimated HR from 1968 SCG signals extracted from the videos compared to the gold-standard HR measured from each subject’s electrocardiogram (bias ± 1.96 SD = 0.04 ± 2.14 bpm;r = 0.99,p < 0.001). The findings from this study underscore the potential of our approach in developing a cardiac monitoring tool using a smartphone that would be widely accessible to the general public and might provide more timely detection of diseases.more » « less
- 
            Stress impacts our physical and mental health as well as our social life. A passive and contactless indoor stress monitoring system can unlock numerous important applications such as workplace productivity assessment, smart homes, and personalized mental health monitoring. While the thermal signatures from a user's body captured by a thermal camera can provide important information about the fight-flight response of the sympathetic and parasympathetic nervous system, relying solely on thermal imaging for training a stress prediction model often lead to overfitting and consequently a suboptimal performance. This paper addresses this challenge by introducing ThermaStrain, a novel co-teaching framework that achieves high-stress prediction performance by transferring knowledge from the wearable modality to the contactless thermal modality. During training, ThermaStrain incorporates a wearable electrodermal activity (EDA) sensor to generate stress-indicative representations from thermal videos, emulating stress-indicative representations from a wearable EDA sensor. During testing, only thermal sensing is used, and stress-indicative patterns from thermal data and emulated EDA representations are extracted to improve stress assessment. The study collected a comprehensive dataset with thermal video and EDA data under various stress conditions and distances. ThermaStrain achieves an F1 score of 0.8293 in binary stress classification, outperforming the thermal-only baseline approach by over 9%. Extensive evaluations highlight ThermaStrain's effectiveness in recognizing stress-indicative attributes, its adaptability across distances and stress scenarios, real-time executability on edge platforms, its applicability to multi-individual sensing, ability to function on limited visibility and unfamiliar conditions, and the advantages of its co-teaching approach. These evaluations validate ThermaStrain's fidelity and its potential for enhancing stress assessment.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
