skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 1, 2026

Title: The NGC 3109 Satellite System: The First Systematic Resolved Search for Dwarf Galaxies Around an SMC-mass Host
Abstract We report the results of the deepest search to date for dwarf galaxies around NGC 3109, a barred spiral galaxy with a mass similar to that of the Small Magellanic Cloud (SMC), using a semiautomated search method. Using the Dark Energy Camera, we survey a region covering a projected distance of ∼70 kpc of NGC 3109 (D= 1.3 Mpc,Rvir∼ 90 kpc,M∼ 108M*) as part of the MADCASH and DELVE-DEEP programs. We introduce a newly developed semiresolved search method, used alongside a resolved search, to identify crowded dwarf galaxies around NGC 3109. Using both approaches, we successfully recover the known satellites Antlia and Antlia B. We identified a promising candidate, which was later confirmed to be a background dwarf through deep follow-up observations. Our detection limits are well defined, with the sample ∼80% complete down toMV∼ −8.0, and include detections of dwarf galaxies as faint asMV∼ −6.0. This is the first comprehensive study of a satellite system through resolved stars around an SMC mass host. Our results show that NGC 3109 has more bright (MV∼ −9.0) satellites than the mean predictions from cold dark matter models, but well within the host-to-host scatter. A larger sample of LMC/SMC-mass hosts is needed to test whether or not the observations are consistent with current model expectations.  more » « less
Award ID(s):
2205863 2307126 2108168 2008110
PAR ID:
10628407
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
AAS Journals
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
989
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
21
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present results from Identifying Dwarfs of MC Analog GalaxiEs (ID-MAGE), a survey aimed at identifying and characterizing unresolved satellite galaxies around 35 nearby LMC- and SMC-mass hosts (D = 4−10 Mpc). We use archival DESI Legacy Survey imaging data and perform an extensive search for dwarf satellites, extending out to a radius of 150 kpc (∼Rvir). We identify 355 candidate satellite galaxies, including 264 new discoveries. Extensive tests with injected galaxies demonstrate that the survey is complete down toMV ∼ −9.0 (assuming the distance of the host) andμ0,V ∼ 26 mag arcsec−2(assuming ann = 1 Sérsic profile). We perform consistent photometry, via Sérsic profile fitting, on all candidates and have initiated a comprehensive follow-up campaign to confirm and characterize candidates. Through a systematic visual inspection campaign, we classify the top candidates as high-likelihood satellites. On average, we find 4.0 ± 1.4 high-likelihood candidate satellites per LMC-mass host and 2.1 ± 0.6 per SMC-mass host, which is within the range predicted by cosmological models. We use this sample to establish upper and lower estimates on the satellite luminosity function of LMC-/SMC-mass galaxies. ID-MAGE nearly triples the number of low-mass galaxies surveyed for satellites with well-characterized completeness limits, providing a unique data set to explore small-scale structure and dwarf galaxy evolution around low-mass hosts in diverse environments. 
    more » « less
  2. Abstract We report the first comprehensive census of the satellite dwarf galaxies around NGC 55 (2.1 Mpc) as a part of the DECam Local Volume Exploration DEEP (DELVE-DEEP) survey. NGC 55 is one of four isolated, Magellanic analogs in the Local Volume around which DELVE-DEEP aims to identify faint dwarfs and other substructures. We employ two complementary detection methods: one targets fully resolved dwarf galaxies by identifying them as stellar overdensities, while the other focuses on semiresolved dwarf galaxies, detecting them through shredded unresolved light components. As shown through extensive tests with injected galaxies, our search is sensitive to candidates down toMV ≲ −6.6 and surface brightnessμ ≲ 28.5 mag arcsec2, and ∼80% complete down toMV ≲ −7.8. We do not report any new confirmed satellites beyond two previously known systems, ESO 294–010 and NGC 55-dw1. We construct the satellite luminosity function of NGC 55 and find it to be consistent with the predictions from cosmological simulations. As one of the first complete luminosity functions for a Magellanic analog, our results provide a glimpse of the constraints on low-mass-host satellite populations that will be further explored by upcoming surveys, such as the Vera C. Rubin Observatory’s Legacy Survey of Space and Time. 
    more » « less
  3. Abstract We have conducted a systematic search around the Milky Way (MW) analog NGC 253 (D= 3.5 Mpc), as a part of the Panoramic Imaging Survey of Centaurus and Sculptor (PISCeS)—a Magellan+Megacam survey to identify dwarfs and other substructures in resolved stellar light around MW-mass galaxies outside of the Local Group. In total, NGC 253 has five satellites identified by PISCeS within 100 kpc with an absoluteV-band magnitude ofMV< −7. We have additionally obtained deep Hubble Space Telescope imaging of four reported candidates beyond the survey footprint: Do III, Do IV, and dw0036m2828 are confirmed to be satellites of NGC 253, while SculptorSR is found to be a background galaxy. We find no convincing evidence for the presence of a plane of satellites surrounding NGC 253. We construct its satellite luminosity function, which is complete down toMV≲ −8 out to 100 kpc andMV≲ −9 out to 300 kpc, and compare it to those calculated for other Local Volume galaxies. Exploring trends in satellite counts and star-forming fractions among satellite systems, we find relationships with host stellar mass, environment, and morphology, pointing to a complex picture of satellite formation, and a successful model has to reproduce all of these trends. 
    more » « less
  4. While dwarf galaxies observed in the field are overwhelmingly star forming, dwarf galaxies in environments as dense or denser than the Milky Way are overwhelmingly quenched. In this paper, we explore quenching in the lower density environment of the Small-Magellanic-Cloud-mass galaxy NGC 3109 (M$$_* \sim 10^8 \, \text{M}_\odot$$), which hosts two known dwarf satellite galaxies (Antlia and Antlia B), both of which are $${\rm H}\, \rm{\small I}$$ deficient compared to similar galaxies in the field and have recently stopped forming stars. Using a new semi-analytic model in concert with the measured star formation histories and gas masses of the two dwarf satellite galaxies, we show that they could not have been quenched solely by direct ram pressure stripping of their interstellar media, as is common in denser environments. Instead, we find that separation of the satellites from pristine gas inflows, coupled with stellar-feedback-driven outflows from the satellites (jointly referred to as the starvation quenching model), can quench the satellites on time-scales consistent with their likely infall times into NGC 3109's halo. It is currently believed that starvation is caused by 'weak' ram pressure that prevents low-density, weakly bound gas from being accreted on to the dwarf satellite, but cannot directly remove the denser interstellar medium. This suggests that star-formation-driven outflows serve two purposes in quenching satellites in low-mass environments: outflows from the host form a low-density circumgalactic medium that cannot directly strip the interstellar media from its satellites, but is sufficient to remove loosely bound gaseous outflows from the dwarf satellites driven by their own star formation. 
    more » « less
  5. ABSTRACT While dwarf galaxies observed in the field are overwhelmingly star forming, dwarf galaxies in environments as dense or denser than the Milky Way are overwhelmingly quenched. In this paper, we explore quenching in the lower density environment of the Small-Magellanic-Cloud-mass galaxy NGC 3109 (M$$_* \sim 10^8 \, \text{M}_\odot$$), which hosts two known dwarf satellite galaxies (Antlia and Antlia B), both of which are $${\rm H}\, \rm{\small I}$$ deficient compared to similar galaxies in the field and have recently stopped forming stars. Using a new semi-analytic model in concert with the measured star formation histories and gas masses of the two dwarf satellite galaxies, we show that they could not have been quenched solely by direct ram pressure stripping of their interstellar media, as is common in denser environments. Instead, we find that separation of the satellites from pristine gas inflows, coupled with stellar-feedback-driven outflows from the satellites (jointly referred to as the starvation quenching model), can quench the satellites on time-scales consistent with their likely infall times into NGC 3109’s halo. It is currently believed that starvation is caused by ‘weak’ ram pressure that prevents low-density, weakly bound gas from being accreted on to the dwarf satellite, but cannot directly remove the denser interstellar medium. This suggests that star-formation-driven outflows serve two purposes in quenching satellites in low-mass environments: outflows from the host form a low-density circumgalactic medium that cannot directly strip the interstellar media from its satellites, but is sufficient to remove loosely bound gaseous outflows from the dwarf satellites driven by their own star formation. 
    more » « less