skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 1, 2026

Title: TEICHMÜLLER CURVES IN HYPERELLIPTIC COMPONENTS OF MEROMORPHIC STRATA
Abstract We provide a complete classification of Teichmüller curves occurring in hyperelliptic components of the meromorphic strata of differentials. Using a non-existence criterion based on how Teichmüller curves intersect the boundary of the moduli space we derive a contradiction to the algebraicity of any candidate outside of Hurwitz covers of strata with projective dimension one, and Hurwitz covers of zero residue loci in strata with projective dimension two.  more » « less
Award ID(s):
2401383
PAR ID:
10628519
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Journal of the Institute of Mathematics of Jussieu
Date Published:
Journal Name:
Journal of the Institute of Mathematics of Jussieu
Volume:
24
Issue:
4
ISSN:
1474-7480
Page Range / eLocation ID:
1521 to 1546
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We describe the Harder–Narasimhan filtration of the Hodge bundle for Teichmüller curves in the nonvarying strata of quadratic differentials appearing in the work of Dawei Chen and Martin Möller [Ann. Sci. ’Ec. Norm. Sup’er. (4) 47 (2014), pp. 309–369]. Moreover, we show that the Hodge bundle on the nonvarying strata away from the irregular components can split as a direct sum of line bundles. As applications, we determine all individual Lyapunov exponents of algebraically primitive Teichmüller curves in the nonvarying strata and derive new results regarding the asymptotic behavior of Lyapunov exponents. 
    more » « less
  2. null (Ed.)
    Abstract We study the intersection of the Torelli locus with the Newton polygon stratification of the modulo $$p$$ reduction of certain Shimura varieties. We develop a clutching method to show that the intersection of the open Torelli locus with some Newton polygon strata is non-empty. This allows us to give a positive answer, under some compatibility conditions, to a question of Oort about smooth curves in characteristic $$p$$ whose Newton polygons are an amalgamate sum. As an application, we produce infinitely many new examples of Newton polygons that occur for smooth curves that are cyclic covers of the projective line. Most of these arise in inductive systems that demonstrate unlikely intersections of the open Torelli locus with the Newton polygon stratification in Siegel modular varieties. In addition, for the 20 special Shimura varieties found in Moonen’s work, we prove that all Newton polygon strata intersect the open Torelli locus (if $p>>0$ in the supersingular cases). 
    more » « less
  3. Abstract We prove that the nonvarying strata of abelian and quadratic differentials in low genus have trivial tautological rings and are affine varieties. We also prove that strata ofk-differentials of infinite area are affine varieties for allk. Vanishing of homology in degree higher than the complex dimension follows as a consequence for these affine strata. Moreover we prove that the stratification of the Hodge bundle for abelian and quadratic differentials of finite area is extremal in the sense that merging two zeros in each stratum leads to an extremal effective divisor in the boundary. A common feature throughout these results is a relation of divisor classes in strata of differentials as well as its incarnation in Teichmüller dynamics. 
    more » « less
  4. Abstract We establish an implication between two long-standing open problems in complex dynamics. The roots of the $$n$$th Gleason polynomial $$G_{n}\in{\mathbb{Q}}[c]$$ comprise the $$0$$-dimensional moduli space of quadratic polynomials with an $$n$$-periodic critical point. $$\operatorname{Per}_{n}(0)$$ is the $$1$$-dimensional moduli space of quadratic rational maps on $${\mathbb{P}}^{1}$$ with an $$n$$-periodic critical point. We show that if $$G_{n}$$ is irreducible over $${\mathbb{Q}}$$, then $$\operatorname{Per}_{n}(0)$$ is irreducible over $${\mathbb{C}}$$. To do this, we exhibit a $${\mathbb{Q}}$$-rational smooth point on a projective completion of $$\operatorname{Per}_{n}(0)$$, using the admissible covers completion of a Hurwitz space. In contrast, the Uniform Boundedness Conjecture in arithmetic dynamics would imply that for sufficiently large $$n$$, $$\operatorname{Per}_{n}(0)$$ itself has no $${\mathbb{Q}}$$-rational points. 
    more » « less
  5. null (Ed.)
    Abstract Given a sequence of curves on a surface, we provide conditions which ensure that (1) the sequence is an infinite quasi-geodesic in the curve complex, (2) the limit in the Gromov boundary is represented by a nonuniquely ergodic ending lamination, and (3) the sequence divides into a finite set of subsequences, each of which projectively converges to one of the ergodic measures on the ending lamination. The conditions are sufficiently robust, allowing us to construct sequences on a closed surface of genus g for which the space of measures has the maximal dimension {3g-3} , for example. We also study the limit sets in the Thurston boundary of Teichmüller geodesic rays defined by quadratic differentials whose vertical foliations are obtained from the constructions mentioned above. We prove that such examples exist for which the limit is a cycle in the 1-skeleton of the simplex of projective classes of measures visiting every vertex. 
    more » « less