We study p-adic hyper-Kloosterman sums, a generalization of the Kloosterman sum with a parameter k that recovers the classical Kloosterman sum when k = 2, over general p-adic rings and even equal characteristic local rings. These can be evaluated by a simple stationary phase estimate when k is not divisible by p, giving an essentially sharp bound for their size. We give a more complicated stationary phase estimate to evaluate them in the case when k is divisible by p. This gives both an upper bound and a lower bound showing the upper bound is essentially sharp. This generalizes previously known bounds in the case of ℤ/p. The lower bounds in the equal characteristic case have two applications to function field number theory, showing that certain short interval sums and certain moments of Dirichlet L-functions do not, as one might hope, admit square-root cancellation.
more »
« less
This content will become publicly available on August 1, 2026
Thermal phase fluctuations in narrow superfluid rings
We have characterized the effects of thermal phase fluctuations in narrow rings of ultracold Fermi superfluids in the unitary regime and demonstrated that matter-wave interference may be reliably used to measure angular variations in the phase difference between two concentric, coplanar superfluid rings. When one of the rings is cut with a barrier, we find that phase fluctuations around that ring can be large enough to degrade the reliability of protocols for control of quantized circulation states. The effect is greatest when the one-dimensional density is low and the coupling between rings is negligible. In this limit, our measurements are consistent with a correlation length smaller than the system size, as expected from theory. These results establish the crucial role of phase fluctuations for experiments involving ultracold superfluids in elongated circuit-like geometries.
more »
« less
- Award ID(s):
- 2046097
- PAR ID:
- 10628537
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review A
- Volume:
- 112
- Issue:
- 2
- ISSN:
- 2469-9926
- Page Range / eLocation ID:
- 023314
- Subject(s) / Keyword(s):
- Fermi gases Fermionic condensates Superfluids Ultracold gases Interferometry
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Persistent currents–inviscid quantized flow around an atomic circuit–are a crucial building block of atomtronic devices. We investigate how acceleration influences the transfer of persistent currents between two density-connected, ring-shaped atomic Bose-Einstein condensates, joined by a tunable weak link that controls system topology. We find that the acceleration of this system modifies both the density and phase dynamics between the rings, leading to a bias in the periodic vortex oscillations studied in T. Bland et al., Phys. Rev. Research 4, 043171 (2022). Accounting for dissipation suppressing such vortex oscillations, the acceleration facilitates a unilateral vortex transfer to the leading ring. We analyze how this transfer depends on the weak-link amplitude, the initial persistent current configuration, and the acceleration strength and direction. Characterization of the sensitivity to these parameters paves the way for a new platform for acceleration measurements, for which we outline a proof-of-concept ultracold double-ring accelerometer.more » « less
-
null (Ed.)Abstract Quantized vortices appear in physical systems from superfluids and superconductors to liquid crystals and high energy physics. Unlike their scalar cousins, superfluids with complex internal structure can exhibit rich dynamics of decay and even fractional vorticity. Here, we experimentally and theoretically explore the creation and time evolution of vortex lines in the polar magnetic phase of a trapped spin-1 87 Rb Bose–Einstein condensate. A process of phase-imprinting a nonsingular vortex, its decay into a pair of singular spinor vortices, and a rapid exchange of magnetic phases creates a pair of three-dimensional, singular singly-quantized vortex lines with core regions that are filled with atoms in the ferromagnetic phase. Atomic interactions guide the subsequent vortex dynamics, leading to core structures that suggest the decay of the singly-quantized vortices into half-quantum vortices.more » « less
-
Abstract The motion of quantized vortices is responsible for many intriguing phenomena in diverse quantum-fluid systems. Having a theoretical model to reliably predict the vortex motion therefore promises a broad significance. But a grand challenge in developing such a model is to evaluate the dissipative force caused by thermal quasiparticles in the quantum fluids scattering off the vortex cores. Various models have been proposed, but it remains unclear which model describes reality due to the lack of comparative experimental data. Here we report a visualization study of quantized vortex rings propagating in superfluid helium. By examining how the vortex rings spontaneously decay, we provide decisive data to identify the model that best reproduces observations. This study helps to eliminate ambiguities about the dissipative force acting on vortices, which could have implications for research in various quantum-fluid systems that also involve similar forces, such as superfluid neutron stars and gravity-mapped holographic superfluids.more » « less
-
Abstract Interacting many-body systems in reduced-dimensional settings, such as ladders and few-layer systems, are characterized by enhanced quantum fluctuations. Recently, two-dimensional bilayer systems have sparked considerable interest because they can host unusual phases, including unconventional superconductivity. Here we present a theoretical proposal for realizing high-temperature pairing of fermions in a class of bilayer Hubbard models. We introduce a general and highly efficient pairing mechanism for mobile charge carriers in doped antiferromagnetic Mott insulators. The pairing is caused by the energy that one charge gains when it follows the path created by another charge. We show that this mechanism leads to the formation of highly mobile but tightly bound pairs in the case of mixed-dimensional Fermi–Hubbard bilayer systems. This setting is closely related to the Fermi–Hubbard model believed to capture the physics of copper oxides, and can be realized in currently available ultracold atom experiments.more » « less
An official website of the United States government
