Context.The elemental abundance in the solar corona differs from that in the photosphere, with low first ionization potential (FIP) elements showing enhanced abundances, a phenomenon known as the FIP effect. This effect is considered to be driven by ponderomotive forces associated with magnetohydrodynamic (MHD) waves, particularly incompressible transverse waves. Aims.We aim to investigate the relationship between coronal abundance fractionation and transverse MHD waves in the chromosphere. We focus on analyzing the spatial correlation between the FIP fractionation and these waves, while exploring wave properties to validate the ponderomotive-force-driven fractionation model. Methods.We analyzed the Hαdata from the Fast Imaging Solar Spectrograph of the Goode Solar Telescope to detect chromospheric transverse MHD waves, and Si X(low FIP) and S X(high FIP) spectra from the EUV Imaging Spectrometer on board Hinode to determine the relative abundance in an active region. By extrapolating linear-force-free magnetic fields with Solar Dynamics Observatory/Helioseismic and Magnetic Imager magnetograms, we examine the connection between chromospheric waves and coronal composition. Around 400 wave packets were identified, and their properties, including the period, velocity amplitude, propagation speed, and propagation direction, were studied. Results.These chromospheric transverse MHD waves, mostly incompressible or weakly compressible, are found near loop footpoints, particularly in the sunspot penumbra and superpenumbral fibrils. The highly fractionated coronal region is associated with areas where these waves were detected within closed magnetic fields. Our examination of the statistics of wave properties revealed that downward-propagating low-frequency waves are particularly prominent, comprising about 43% of the detected waves. Conclusions.The correlation between abundance fractionation and transverse MHD waves, along with wave properties, supports the hypothesis that FIP fractionation occurs due to the ponderomotive force from transverse MHD waves in the chromosphere. Additionally, the observed characteristics of these chromospheric waves provide valuable observational constraints for understanding the FIP fractionation process.
more »
« less
Flowing plasma rearrangement in the presence of static perturbing fields
Charged particles interacting with electromagnetic waves have a portion of their energy tied up in wave-driven oscillations. When these waves are localized to the exhaust of linear magnetic confinement systems, this ponderomotive effect can be utilized to enhance particle confinement. The same effect can be derived for particles moving via an E×B drift into a region of a static perturbation to the electromagnetic fields which has a large wave vector component in the direction of the motion. In this work, we use a simplified slab model to self-consistently solve for the electromagnetic fields within the fluid flowing plasma of a static flute-like (k∥=0) perturbation and evaluate the resulting ponderomotive potential. We find that two types of perturbations can exist within the flowing plasma, which are an O wave and an X wave in the frame moving with the fluid. In the case of tenuous plasma, these perturbations are magnetostatic or electrostatic multipole-analog perpendicular to the guiding magnetic field in the lab frame, respectfully. For denser plasmas, the O wave-like perturbation is screened at the electron skin depth scale, and the X wave-like perturbation is a combination of a similar perpendicular electric perturbation and parallel magnetic perturbation. The ponderomotive potential generated in the X wave-like case is gyrofrequency-dependent and can be used as either potential barriers or potential wells, depending on the direction of the flow velocity.
more »
« less
- Award ID(s):
- 2308829
- PAR ID:
- 10629261
- Publisher / Repository:
- Physics of Plasmas
- Date Published:
- Journal Name:
- Physics of Plasmas
- Volume:
- 31
- Issue:
- 8
- ISSN:
- 1070-664X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Foreshock bubbles (FBs) have been observed upstream of solar wind tangential discontinuities (TDs). A hypothesized mechanism is that foreshock ions with gyroradii larger than the TD thickness may move to upstream side of TDs and generate FBs. In this study, we present the very first three‐dimensional global hybrid simulation of an FB driven by a TD. After the TD encounters the ion foreshock, plasma and magnetic field perturbations are generated upstream of the TD. These perturbations are characteristically consistent with the observed TD‐driven FBs, confirming that TDs can form FBs. We further analyze the initial perpendicular temperature increase initiating the FB and compare the temperature structure with that from tracing test‐particles in static TD electric and magnetic fields. The structure can be explained by the perpendicular velocity change of foreshock ions with large gyroradii as they encounter the magnetic field direction change across the TD, which supports the hypothesized mechanism.more » « less
-
Abstract The nature of the 3‐s ultralow frequency (ULF) wave in the Earth's foreshock region and the associated wave‐particle interaction are not yet well understood. We investigate the 3‐s ULF waves using Magnetospheric Multiscale (MMS) observations. By combining the plasma rest frame wave properties obtained from multiple methods with the instability analysis based on the velocity distribution in the linear wave stage, the ULF wave is determined to be due to the ion/ion nonresonant mode instability. The interaction between the wave and ions is analyzed using the phase relationship between the transverse wave fields and ion velocities and using the longitudinal momentum equation. During the stage when ULF waves have sinusoidal waveforms up to |dB|/|B0| ~ 3, wheredBis the wave magnetic field andB0is the background magnetic field, the wave electric fields perpendicular toB0do negative work to solar wind ions; alongB0, a longitudinal electric field develops, but theV × Bforce is stronger and leads to solar wind ion deceleration. During the same wave stage, the backstreaming beam ions gain energy from the transverse wave fields and get deceleration alongB0by the longitudinal electric field. The ULF wave leads to electron heating, preferentially in the direction perpendicular to the local magnetic field. Secondary waves are generated within the ULF waveforms, including whistler waves near half of the electron cyclotron frequency, high‐frequency electrostatic waves, and magnetosonic whistler waves. The work improves the understanding of the nature of 3‐s ULF waves and the associated wave‐particle interaction.more » « less
-
An accurate description of plasma waves is fundamental for the understanding of many plasma phenomena. It is possible to twist plasma waves such that, in addition to having longitudinal motion, they can possess a quantized orbital angular momentum. One such type of plasma wave is the Laguerre–Gaussian mode. Three-dimensional numerical particle-in-cell simulations demonstrate the existence of stable long-lived plasma waves with orbital angular momentum. These waves can be shown to create large amplitude static magnetic fields with unique twisted longitudinal structures. In this paper, we review the recent progress in studies of helical plasma waves and present a new analytical description of a standing Laguerre–Gaussian plasma wave mode along with 3D particle-in-cell simulation results. The Landau damping of twisted plasma waves shows important differences compared to standard longitudinal plasma wave Landau damping. These effects include an increased damping rate, which is affected by both the focal width and the orbital number of the plasma wave. This increase in the damping rate is of the same order as the thermal correction. Moreover, the direction of momentum picked up by resonant particles from the twisted plasma wave can be significantly altered. By contrast, the radial electric field has a subtle effect on the trajectories of resonant electrons.more » « less
-
This paper presents quasilinear theory (QLT) for a classical plasma interacting with inhomogeneous turbulence. The particle Hamiltonian is kept general; for example, relativistic, electromagnetic and gravitational effects are subsumed. A Fokker–Planck equation for the dressed ‘oscillation-centre’ distribution is derived from the Klimontovich equation and captures quasilinear diffusion, interaction with the background fields and ponderomotive effects simultaneously. The local diffusion coefficient is manifestly positive-semidefinite. Waves are allowed to be off-shell (i.e. not constrained by a dispersion relation), and a collision integral of the Balescu–Lenard type emerges in a form that is not restricted to any particular Hamiltonian. This operator conserves particles, momentum and energy, and it also satisfies the $$\smash {H}$$ -theorem, as usual. As a spin-off, a general expression for the spectrum of microscopic fluctuations is derived. For on-shell waves, which satisfy a quasilinear wave-kinetic equation, the theory conserves the momentum and energy of the wave–plasma system. The action of non-resonant waves is also conserved, unlike in the standard version of QLT. Dewar's oscillation-centre QLT of electrostatic turbulence ( Phys. Fluids , vol. 16, 1973, p. 1102) is proven formally as a particular case and given a concise formulation. Also discussed as examples are relativistic electromagnetic and gravitational interactions, and QLT for gravitational waves is proposed.more » « less
An official website of the United States government

