skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 27, 2026

Title: Toward Ethical GeoDesign in the Urban Digital Twin Era
GeoDesign is undergoing a methodological shift through its integration with Urban Digital Twins (UDTs) and artificial intelligence (AI), moving from static spatial analysis to interactive and justice-oriented planning practices. This editorial reframes GeoDesign as both ethical and civic efforts. While digital twin technologies enable participatory planning and multiscalar data integration, they also raise concerns about bias, transparency, and governance. The six contributions in this special issue examine frameworks for ethical design, participatory tools, data interoperability, housing policy modeling, and planning pedagogy. Collectively, they advance the field of Ethical GeoDesign, emphasizing accountability, representation, and equity in UDTs.  more » « less
Award ID(s):
2401860
PAR ID:
10629307
Author(s) / Creator(s):
;
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Journal of Planning Education and Research
ISSN:
0739-456X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This paper explores the evolution of Geodesign in addressing spatial and environmental challenges from its early foundations to the recent integration of artificial intelligence (AI). AI enhances existing Geodesign methods by automating spatial data analysis, improving land use classification, refining heat island effect assessment, optimizing energy use, facilitating green infrastructure planning, and generating design scenarios. Despite the transformative potential of AI in Geodesign, challenges related to data quality, model interpretability, and ethical concerns such as privacy and bias persist. This paper highlights case studies that demonstrate the application of AI in Geodesign, offering insights into its role in understanding existing systems and designing future changes. The paper concludes by advocating for the responsible and transparent integration of AI to ensure equitable and effective Geodesign outcomes. 
    more » « less
  2. null (Ed.)
    The market for hydrogen fuel cell vehicles (FCVs) continues to grow worldwide. At present, early adopters rely on a sparse refuelling infrastructure, and there is only limited knowledge about how they evaluate the geographic arrangement of stations when they decide to get an FCV, which is an important consideration for facilitating widespread FCV diffusion. To address this, we conducted several related studies based on surveys and interviews of early FCV adopters in California, USA, and a participatory geodesign workshop with hydrogen infrastructure planning stakeholders in Connecticut, USA. From this mixed-methods research project, we distil 15 high-level findings for planning hydrogen station infrastructure to encourage FCV adoption. 
    more » « less
  3. Geodesign is a participatory planning approach in which stakeholders use geographic information systems to develop and vet alternative design scenarios in a collaborative and iterative process. This study is based on a 2019 geodesign workshop in which 17 participants from industry, government, university, and non-profit sectors worked together to design an initial network of hydrogen refueling stations in the Hartford, Connecticut, metropolitan area. The workshop involved identifying relevant location factors, rapid prototyping of station network designs, and developing consensus on a final design. The geodesign platform, which was designed specifically for facility location problems, enables breakout groups to add or delete stations with a simple point-and-click operation, view and overlay different map layers, compute performance metrics, and compare their designs to those of other groups. By using these sources of information and their own expert local knowledge, participants recommended six locations for hydrogen refueling stations over two distinct phases of station installation. We quantitatively and qualitatively compared workshop recommendations to solutions of three optimal station location models that have been used to recommend station locations, which minimize travel times from stations to population and traffic or maximize trips that can be refueled on origin–destination routes. In a post-workshop survey, participants rated the workshop highly for facilitating mutual understanding and information sharing among stakeholders. To our knowledge, this workshop represents the first application of geodesign for hydrogen refueling station infrastructure planning. 
    more » « less
  4. Recent research, professional, and funding agendas have re-surfaced the importance of knowledge co-production and ethical participation to address urban tensions worldwide: urbanization and rapid climate change, disproportionately impacting socially vulnerable populations. Despite the rise of Digital Twins (DT), buoyed by the growth of computational and data technologies in the past 10 to 15 years, DT have fallen short of their promise to address these tensions. We present a participatory modeling (PM) platform, Fora.ai, to build on existing strengths of DT and overcome the most prevalent limitations of data-driven technologies. This platform (i.e., a set of visualization and simulation tools and facilitation and sense-making approaches) is organized around the iterative steps in PM: problem definition and goal setting, preference elicitation, collaborative scenario-building, simulation, tradeoff deliberation, and solution-building. We demonstrate the platform’s effectiveness when set within a stakeholder-led process that integrates diverse knowledge, data sources, and values in pursuit of equitable green infrastructure (GI) planning to address flooding. The immediate visualization of simulated impacts, followed by reflection on causal and spatial relationships and tradeoffs across diverse priorities, enhanced participants’ collective understanding of how GI interacts with the built environment and physical conditions to inform their intervention scenarios. The facilitated use of Fora.ai enabled a collaborative socio-technical sense-making process, whereby participants transitioned from untested beliefs to designs that were specifically tailored to the problem in the study area and the diversity of values represented, attending to both localized flooding and neighborhood-level impacts. They also derived generalizable design principles that could be applied elsewhere. We show how the combination of specific facilitation practices and platform features leverage the power of data, computational modeling, and social complexity to contribute to collaborative learning and creative and equitable solution-building for urban sustainability and climate resilience. 
    more » « less
  5. Digital research methodologies are driving a revolution in health technology but do not yet fully engage diverse and historically underrepresented populations. In this paper, we explore the ethical imperative for such engagement alongside accompanying challenges related to recruitment, appreciation of risk, and confidentiality, among others. We critically analyze existing research ethics frameworks and find that their reliance on individualistic and autonomy-focused models of research ethics does not offer adequate protection in the context of the diversity imperative. To meet the requirements of justice and inclusivity in digital research, methods will benefit from a reorientation toward more participatory practices. 
    more » « less