Abstract Subkilometer processes are critical to the physics of aerosol‐cloud interaction (ACI) but have been dependent on parameterizations in global model simulations. We thus report the strength of ACI in the Ultra‐Parameterized Community Atmosphere Model (UPCAM), a multiscale climate model that uses coarse exterior resolution to embed explicit cloud‐resolving models with enough resolution (250 m horizontal, 20 m vertical) to quasi‐resolve subkilometer eddies. To investigate the impact on ACIs, UPCAM's simulations are compared to a coarser multiscale model with 4 km horizontal resolution. UPCAM produces cloud droplet number concentrations (Nd) and cloud liquid water path (LWP) values that are higher than the coarser model but equally plausible compared to observations. Our analysis focuses on the Northern Hemisphere (20–50°N) oceans, where historical aerosol increases have been largest. We find similarities in the overall radiative forcing from ACIs in the two models, but this belies fundamental underlying differences. The radiative forcing from increases in LWP is weaker in UPCAM, whereas the forcing from increases inNdis larger. Surprisingly, the weaker LWP increase is not due to a weaker increase in LWP in raining clouds, but a combination of weaker increase in LWP in nonraining clouds and a smaller fraction of raining clouds in UPCAM. The implication is that as global modeling moves toward finer than storm‐resolving grids, nuanced model validation of ACI statistics conditioned on the existence of precipitation and good observational constraints on the baseline probability of precipitation will become key for tighter constraints and better conceptual understanding.
more »
« less
This content will become publicly available on August 16, 2026
Aerosol Influences on Cloud Water: Insights From ARM EPCAPE Observations With Explainable Machine Learning
Abstract This study employs an explainable machine learning (ML) framework (XGBoost‐SHapley Additive exPlanations analysis) to investigate controlling factors on cloud liquid water path (LWP) using EPCAPE observations near the California coast. Aerosols are found to be the dominant factor explaining LWP variability, surpassing meteorological factors (MFs). By isolating aerosol effects from meteorological influences, the ML reveals a negative linear relationship between LWP and cloud droplet number concentration (Nd) in log space, likely driven by entrainment drying via evaporation‐entrainment feedback. This aligns with the negative regime of the inverted‐V relationship reported in previous studies, while no positive LWP responses are found due to a limited number of precipitating cases in EPCAPE. Furthermore, the sensitivity of LWP toNdshows a non‐linear dependence on MFs like moisture contrast between surface and free troposphere and lower‐tropospheric stability. This occurs due to the interplay between the MFs' direct effects on entrainment drying and indirect effects through LWP adjustments.
more »
« less
- Award ID(s):
- 2126098
- PAR ID:
- 10629444
- Publisher / Repository:
- American Geophysical Union
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 52
- Issue:
- 15
- ISSN:
- 0094-8276
- Subject(s) / Keyword(s):
- Aerosol cloud
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Cloud droplet number concentration (Nd) is a key microphysical property that is largely controlled by the balance between sources and sinks of aerosols that serve as cloud condensation nuclei (CCN). Despite being a key sink of CCN, the impact of coalescence scavenging on Southern Ocean (SO) cloud is poorly known. We apply a simple source‐and‐sink budget model based on parameterizations to austral summer aircraft observations to test model behavior and examine the relative influence of processes that determineNdin SO stratocumulus clouds. The model predictsNdwith little bias and a correlation coefficient of ∼0.7 compared with observations. Coalescence scavenging is found to be an important sink of CCN in both liquid and mixed‐phase precipitating stratocumulus and reduces the predictedNdby as much as 90% depending on the precipitation rate. The free tropospheric aerosol source controlsNdmore strongly than the surface aerosol source during austral summer.more » « less
-
Abstract Comparisons of high‐resolution extended range CCN spectra measured at 100 m altitude with cloud and drizzle microphysics in the Rain in Cumulus over the Ocean (RICO) aircraft field project are presented. CCN concentrations,NCCN, active at supersaturations,S, >0.1% showed positive relationships with cloud droplet concentrations,Nc, measured at intermediate (606–976 m) and very high altitudes (1,763–3,699 m). These correlation coefficients,R, progressively increased withSwhile the two‐tailed probabilities, P2, progressively decreased with S to < 10−6at 1.6%S. More important were the positive relationships betweenNCCNactive atS < 0.1% and drizzle drop concentrations,Nd, at high (977–1,662 m), very high and high‐very high altitudes combined (977–3,699 m). All of these relationships were consistent for eight different cloud liquid water content,Lc, thresholds (forNc) andLcbins (forNd) ranging from 0.0002 to 0.3 g/m3. Negative relationships between CCN modality and low altitude (76–475 m) cloudiness coupled with no relationship ofNCCNactive at any S withNcof these low clouds indicated a cloud effect on ambient aerosol. This is a demonstration of clouds causing bimodal aerosol.more » « less
-
Abstract Increases in aerosol concentration are well known to influence the microphysical processes and radiative properties of clouds. By reducing droplet size, an increase in aerosol can lessen collision efficiency and increase liquid water path (LWP) in precipitating clouds or enhance evaporation rate and decrease LWP in non‐precipitating clouds. We utilize large eddy simulations to further investigate these aerosol indirect effects in Arctic mixed‐phase clouds and find, in agreement with previous studies, precipitating clouds to experience an increase in LWP and non‐precipitating clouds a decrease in LWP. Most importantly however, our results reveal a different explanation for why such an LWP decrease occurs in decoupled, non‐precipitating clouds. We find enhanced evaporation near cloud top to be driven primarily by a strengthening of maximum radiative cooling rate with aerosol concentration which drives stronger entrainment, an effect that holds true even in clouds that are optically thick.more » « less
-
Abstract Improved understanding of the effects of meteorological conditions on the transmission of SARS-CoV-2, the causative agent for COVID-19 disease, is needed. Here, we estimate the relationship between air temperature, specific humidity, and ultraviolet radiation and SARS-CoV-2 transmission in 2669 U.S. counties with abundant reported cases from March 15 to December 31, 2020. Specifically, we quantify the associations of daily mean temperature, specific humidity, and ultraviolet radiation with daily estimates of the SARS-CoV-2 reproduction number (Rt) and calculate the fraction ofRtattributable to these meteorological conditions. Lower air temperature (within the 20–40 °C range), lower specific humidity, and lower ultraviolet radiation were significantly associated with increasedRt. The fraction ofRtattributable to temperature, specific humidity, and ultraviolet radiation were 3.73% (95% empirical confidence interval [eCI]: 3.66–3.76%), 9.35% (95% eCI: 9.27–9.39%), and 4.44% (95% eCI: 4.38–4.47%), respectively. In total, 17.5% ofRtwas attributable to meteorological factors. The fractions attributable to meteorological factors generally were higher in northern counties than in southern counties. Our findings indicate that cold and dry weather and low levels of ultraviolet radiation are moderately associated with increased SARS-CoV-2 transmissibility, with humidity playing the largest role.more » « less
An official website of the United States government
