There have recently been calls to consider the development of student empathy within engineering coursework. We argue that this goal may be reached by infusing more traditional engineering coursework with humanities. Our Humanities-Driven Science, Technology, Engineering, and Mathematics (HDSTEM) curriculum uses a humanities format as a context to discuss science and engineering advancement. The foundation of an HDSTEM curriculum is that it would reassert the importance of humans and human impact in science and engineering, while recognizing the social, political, and cultural catalysts and outcomes of technological innovation. Therefore, we hypothesize that through an HDSTEM curriculum, students will not only develop technically accurate solutions to problems posed in an engineering curriculum but will also question their ideas' impact on society. For this project, we draw on the case of an HDSTEM course, “World War II and Technology,” taught at Texas Tech University (TTU) and Rochester Institute of Technology (RIT). Specifically, we will present the analysis of linking specific problem-solving exercises and assignments that embed empathy with the delivery of the courses following an HDSTEM instruction modality. The problem-solving exercises and assignments incorporate the traditional Six Sigma define, measure, analyze, implement, and control (DMAIC) process. In these assignments, students were asked to reverse engineer technical, scientific, and logistical problems seen during World War II. In a more straightforward means to elicit empathy, students were assigned an additional empathize step with the DMAIC (EDMAIC) during two of these assignments. The empathize step was generic, asking students to take the perspective of the creators, users, and others affected by the problem and consider the societal needs and constraints of the time. Students completed four of these assignments (2 DMAICs bookending 2 (EDMAICs) throughout the course. Combining HDSTEM instruction modality and empathy problem-solving assignments, preliminary discourse analysis of assignments, which looks deeply at the language students used to create empathetic dispositions/identities within their work, revealed that students integrated empathy into technology design at various levels at both TTU and RIT. These disposition levels in empathy were observed and subjectively quantified using common rubrics. These outcomes result even from delivery at pre- and post-pandemic timeframes and at two institutions (i.e., the course was offered at TTU in the fall of 2019 and at RIT in the fall of 2022). In this consideration, the HDSTEM curriculum and empathy-embedded assignments have shown a cultivation of empathetic disposition among students. Further, based on these differing implementations, we will also present and comment on the experience of implementing the TTU course treatment at a new institution, RIT, to serve as a protocol in the future. These courses will be offered again in the fall of 2023 year to offer a comprehensive comparison between first-time (or one-off) in contrast to a sustained delivery of an HDSTEM curriculum.
more »
« less
Efficacy of Humanities-Driven Science, Technology, Engineering, and Mathematics Curriculum on Integrating Empathy Into Technology Design
There have recently been calls for post-secondary engineering programs to develop more well-rounded engineers who are more capable of understanding and empathizing with clients, as well engage in stronger ethical decision-making. In this study, we examine the efficacy of a hybrid humanities-engineering course in developing the empathetic performativity of engineering students taught at two universities. We use a discourse analysis methodology to examine the language in student assignments over the trajectory of this course, looking for instances where engineering students position themselves empathetically within their work. Based on our analysis, we see small gains in the empathetic performances of engineering students in this context, however, these findings are nuanced and require qualification. Keywords: Discourse Analysis, Humanities-Driven STEM, Empathy
more »
« less
- Award ID(s):
- 2142666
- PAR ID:
- 10629630
- Publisher / Repository:
- AERA
- Date Published:
- Format(s):
- Medium: X
- Location:
- Philadelphia, Pennsylvania
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Engineering education traditionally focuses on technical content and problem-solving, leaving little room in the curriculum to examine broader environmental and sociotechnical impacts of engineering work. However, if engineers wish to have intentional, positive influences on these broader impacts, skills for reflective thinking and ethical decision-making are essential. The arts and humanities can provide important and often neglected perspectives for engineers in developing such skills. In a recent seminar course for civil/environmental engineers, we explored ways of developing these skills through activities including Visual Thinking Strategies (VTS), in-class readings & discussions, essay writing, and portfolio assignments. In this paper, we present selected findings from this experimental course. While the class was small, comprised of a dozen graduate students, results were encouraging. For example, findings from qualitative thematic analysis of pre- and post-course essays showed an increase in recognition of the importance of breadth of knowledge and/or perspective. Similarly, pre-post Likert-type survey results showed a statistically significant increase (p<0.005, d=1, n=10) in Contextual Competence, a self-reported measure of ability to anticipate and understand the impacts and constraints of broader contexts on engineering solutions. These findings are preliminary but suggest the course helped students develop capacity for reflection through arts- and humanities-based activities.more » « less
-
Background: Because of prior experience solving well-structured problems that have single, correct answers, students often struggle to direct their own design work and may not understand the need to frame ill-structured design problems. Purpose: Framing agency—defined as making decisions that are consequential to framing design problems and learning through this process—sheds light on students’ treatment of design problems; by framing, we mean the various actions designers take to understand, define, and bound the problem. Using the construct framing agency, we sought to characterize design team discourse to detect whether students treated design problems as ill- or well-structured and examine the consequences of this treatment. Method: Data were collected through extended participant observation of a capstone design course in a biomedical engineering program at a large research university. Data included audio and video records of design team meetings over the course of framing and solving industry-sponsored problems. For this paper, we analyzed three cases using sociolinguistic content analysis to characterize framing agency and compared the cases to illuminate the nuances of framing agency. Results: All teams faced impasses; one team navigated the impasse by framing the problem, whereas the others treated the problem as given. We identified markers of agency in students’ discourse, including tentative language, personal pronouns, and sharing ownership. Conclusions: Framing agency clarifies the kinds of learning experiences students need in order to overcome past experiences dominated by solving archetypical well-structured problems with predetermined solutions.more » « less
-
Engineering education is increasingly looking to the liberal arts to broaden and diversify preparation of students for professional careers. The present study involves an elective graduate environmental engineering course that incorporated the arts and humanities. The goal of the course was to develop engineers and technical professionals who would become both more appreciative of and better equipped to address technical, ethical, social, and cultural challenges in engineering through the development of critical and reflective thinking skills and reflective practice in their professional work. A reflective writing assignment was submitted by students following each of fourteen course topics in response to the following question: Reflect on how you might want to apply what you learned to your development as a professional and/or to your daily life. Student responses were classified by human coders using qualitative text analytic methods and their classifications were attempted to be learned by a simple machine classifier. The goal of this analysis was to identify and quantify students’ reflections on prospective behaviors that emerged through participation in the course. The analysis indicated that the primary focus of students’ responses was self-improvement, with additional themes involving reflection, teamwork, and improving the world. The results provide a glimpse into how broadening and diversifying the curriculum might shape students’ thinking in directions that are more considerate of their contributions to their profession and society. In the discussion, we consider the findings from the human and machine assessments and suggest how incorporating AI machine methods into engineering provides new possibilities for engineering pedagogy.more » « less
-
In this presentation, we explore the lessons learned from two courses entitled “War, Machine, Culture, and Society: History and Engineering in the Second World War,” which integrate engineering problem-solving within a World War II history course. This comes as part of a larger project to bring the humanities and engineering into deeper conversation with one another. For this project, we are especially interested in the aspect of teaching aspect of such a course, wherein an engineering professor and humanities professor “share the stage” in a classroom, especially given that STEM disciplines and humanities disciplines present and value different kinds of knowledge. Frome a framework of “epistemological identity,” we use classroom observations, focus group data, and analysis of syllabi to probe into the ways that instructors from radically different disciplines develop coursework together and navigate the classroom space. For this WIP, we are currently engaged in the data collection and analysis phase, and anticipate being finished by the end of the semester. We believe this work has important implications as we see more work calling for inter/transdisciplinary considerations in engineering, the development of greater social and emotional skills for engineers, and various iterations of STEM plus the arts and humanities. As these movements continue to gain momentum, we will need to better understand how to better integrate various disciplines into engineering; this project will discuss difficulties and successes from practitioners doing this work, considering especially the ways that knowledge is constructed, conveyed, and valued by practitioners in the classroom.more » « less
An official website of the United States government

