CdO has drawn much recent interest as a high-room-temperature-mobility oxide semiconductor with exciting potential for mid-infrared photonics and plasmonics. Wide-range modulation of carrier density in CdO is of interest both for fundamental reasons (to explore transport mechanisms in single samples) and for applications (in tunable photonic devices). Here, we thus apply ion-gel-based electrolyte gating to ultrathin epitaxial CdO(001) films, using transport, x-ray diffraction, and atomic force microscopy to deduce a reversible electrostatic gate response from −4 to +2 V, followed by rapid film degradation at higher gate voltage. Further advancing the mechanistic understanding of electrolyte gating, these observations are explained in terms of low oxygen vacancy diffusivity and high acid etchability in CdO. Most importantly, the 6-V-wide reversible electrostatic gating window is shown to enable ten-fold modulation of the Hall electron density, a striking voltage-induced metal–insulator transition, and 15-fold variation of the electron mobility. Such modulations, which are limited only by unintentional doping levels in ultrathin films, are of exceptional interest for voltage-tunable devices. 
                        more » 
                        « less   
                    This content will become publicly available on June 1, 2026
                            
                            In situ synchrotron x-ray studies of epitaxial SrCoO x films during ionic liquid gating
                        
                    
    
            The manipulation of ions in complex oxide materials can be used to mimic brain-like plasticity through changes to the resistivity of a neuromorphic device. Advances in the design of more energy efficient devices require improved understanding of how ions migrate within a material and across its interface. We investigate the exchange of oxygen and hydrogen in a model SrCoOx epitaxial film—a material that transitions between a ferromagnetic metal and antiferromagnetic insulator depending on the oxygen concentration. Changes to the film during ionic liquid gating were measured by in situ synchrotron x-ray techniques as a function of time and gate voltage, examining the reversibility of the oxide over one complete gating cycle. We find that the out-of-plane lattice constant and oxygen vacancy concentration of SrCoOx are largely reversible although changes were observed in the ordered vacancy structure. Our results provide much needed insight into electrolyte-gated phase behavior in the transition metal oxides. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10629709
- Publisher / Repository:
- AIP Publishing
- Date Published:
- Journal Name:
- APL Materials
- Volume:
- 13
- Issue:
- 6
- ISSN:
- 2166-532X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Mismatched complex oxide thin films and heterostructures have gained significant traction for use as electrolytes in intermediate temperature solid oxide fuel cells, wherein interfaces exhibit variation in ionic conductivity as compared to the bulk. Although misfit dislocations present at interfaces in these structures impact ionic conductivity, the fundamental mechanisms responsible for this effect are not well understood. To this end, a kinetic lattice Monte Carlo (KLMC) model was developed to trace oxygen vacancy diffusion at misfit dislocations in SrTiO3/BaZrO3 heterostructures and elucidate the atomistic mechanisms governing ionic diffusion at oxide interfaces. The KLMC model utilized oxygen vacancy migration energy barriers computed using molecular statics. While some interfaces promote oxygen vacancy diffusion, others impede their transport. Fundamental factors such as interface layer chemistry, misfit dislocation structure, and starting and ending sites of migrating ions play a crucial role in oxygen diffusivity. Molecular dynamics (MD) simulations were further performed to support qualitative trends for oxygen vacancy diffusion. Overall, the agreement between KLMC and MD is quite good, though MD tends to predict slightly higher conductivities, perhaps a reflection of nuanced structural relaxations that are not captured by KLMC. The current framework comprising KLMC modeling integrated with molecular statics offers a powerful tool to perform mechanistic studies focused on ionic transport in thin film oxide electrolytes and facilitate their rational design.more » « less
- 
            This work presents a comprehensive computational study showing how aliovalent doping, crystal structure, and oxygen vacancy interactions impact the oxygen vacancy conductivity of lanthanum strontium ferrite (LSF) as a function of temperature in air. First, density functional theory (DFT) calculations were performed to obtain the oxygen vacancy migration barriers and understand the oxidation state changes on neighboring Fe atoms during oxygen vacancy migration. The oxygen migration barrier energy and the corresponding diffusion coefficient were then combined with previously determined mobile oxygen vacancy concentrations to predict the overall oxygen vacancy conductivity and compare it with experimentally measured values. More importantly, the impact of phase changes, the La/Sr ratio, and the oxygen non-stoichiometry on the mobile oxygen vacancy concentration, diffusivity, and conductivity were analyzed. It was found that stabilizing rhombohedral LSF or cubic SFO (through doping or other means), such that oxygen-vacancy-ordering-induced phase transitions are prevented, leads to high oxygen conductivity under solid oxide fuel cell operating conditions.more » « less
- 
            Oxygen vacancies ( V O • • ) play a critical role as defects in complex oxides in establishing functionality in systems including memristors, all-oxide electronics, and electrochemical cells that comprise metal-insulator-metal or complex oxide heterostructure configurations. Improving oxide-oxide interfaces necessitates a direct, spatial understanding of vacancy distributions that define electrochemically active regions. We show vacancies deplete over micrometer-level distances in Nb-doped SrTiO 3 (Nb:SrTiO 3 ) substrates due to deposition and post-annealing processes. We convert the surface potential across a strontium titanate/yttria-stabilized zirconia (STO/YSZ) heterostructured film to spatial (<100 nm) vacancy profiles within STO using ( T = 500°C) in situ scanning probes and semiconductor analysis. Oxygen scavenging occurring during pulsed laser deposition reduces Nb:STO substantially, which partially reoxidizes in an oxygen-rich environment upon cooling. These results (i) introduce the means to spatially resolve quantitative vacancy distributions across oxide films and (ii) indicate the mechanisms by which oxide thin films enhance and then deplete vacancies within the underlying substrate.more » « less
- 
            Abstract Materials with tunable infrared refractive index changes have enabled active metasurfaces for novel control of optical circuits, thermal radiation, and more. Ion‐gel‐gated epitaxial films of the perovskite cobaltite La1−xSrxCoO3−δ(LSCO) with 0.00 ≤x≤ 0.70 offer a new route to significant, voltage‐tuned, nonvolatile refractive index modulation for infrared active metasurfaces, shown here through Kramers–Kronig‐consistent dispersion models, structural and electronic transport characterization, and electromagnetic simulations before and after electrochemical reduction. As‐grown perovskite films are high‐index insulators forx< 0.18 but lossy metals forx> 0.18, due to a percolation insulator‐metal transition. Positive‐voltage gating of LSCO transistors withx> 0.18 reveals a metal‐insulator transition from the metallic perovskite phase to a high‐index (n> 2.5), low‐loss insulating phase, accompanied by a perovskite to oxygen‐vacancy‐ordered brownmillerite transformation at highx. Atx< 0.18, despite nominally insulating character, the LSCO films undergo remarkable refractive index changes to another lower‐index, lower‐loss insulating perovskite state with Δn >0.6. In simulations of plasmonic metasurfaces, these metal‐insulator and insulator‐insulator transitions support significant, varied mid‐infrared reflectance modulation, thus framing electrochemically gated LSCO as a diverse library of room‐temperature phase‐change materials for applications including dynamic thermal imaging, camouflage, and optical memories.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
