skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bounding the Kirby–Thompson invariant of spun knots
A bridge trisection of a smooth surface in S4 is a decomposition analogous to a bridge splitting of a link in S3. The Kirby–Thompson invariant of a bridge trisection measures its complexity in terms of distances between disk sets in the pants complex of the trisection surface. We give the first significant bounds for the Kirby–Thompson invariant of spun knots. In particular, we show that the Kirby–Thompson invariant of the spun trefoil is 15.  more » « less
Award ID(s):
2104022
PAR ID:
10629750
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Algebraic & Geometric Topology
Date Published:
Journal Name:
Algebraic & Geometric Topology
Volume:
24
Issue:
6
ISSN:
1472-2747
Page Range / eLocation ID:
3363 to 3399
Subject(s) / Keyword(s):
bridge trisection 2-knot knotted surface curve complex 4-manifold tangle
Format(s):
Medium: X Other: PDF
Sponsoring Org:
National Science Foundation
More Like this
  1. We prove that every smoothly embedded surface in a 4-manifold can be isotoped to be in bridge position with respect to a given trisection of the ambient 4-manifold; that is, after isotopy, the surface meets components of the trisection in trivial disks or arcs. Such a decomposition, which we call a generalized bridge trisection, extends the authors’ definition of bridge trisections for surfaces in S 4 . Using this construction, we give diagrammatic representations called shadow diagrams for knotted surfaces in 4-manifolds. We also provide a low-complexity classification for these structures and describe several examples, including the important case of complex curves inside ℂ ℙ 2 . Using these examples, we prove that there exist exotic 4-manifolds with ( g , 0 ) —trisections for certain values of g. We conclude by sketching a conjectural uniqueness result that would provide a complete diagrammatic calculus for studying knotted surfaces through their shadow diagrams. 
    more » « less
  2. We construct a Kirby color in the setting of Khovanov homology: an ind-object of the annular Bar-Natan category that is equipped with a natural handle slide isomorphism. Using functoriality and cabling properties of Khovanov homology, we define a Kirby-colored Khovanov homology that is invariant under the handle slide Kirby move, up to isomorphism. Via the Manolescu–Neithalath 2-handle formula, Kirby-colored Khovanov homology agrees with the\mathfrak{gl}_{2}skein lasagna module, hence is an invariant of 4-dimensional 2-handlebodies. 
    more » « less
  3. We examine questions about surgery on links which arise naturally from the trisection decomposition of 4-manifolds developed by Gay and Kirby \cite{G-K3}. These links lie on Heegaard surfaces in $$\#^j S^1 \times S^2$$ and have surgeries yielding $$\#^k S^1 \times S^2$$. We describe families of links which have such surgeries. One can ask whether all links with such surgeries lie in these families; the answer is almost certainly no. We nevertheless give a small piece of evidence in favor of a positive answer. 
    more » « less
  4. Abstract We study embedded spheres in 4–manifolds (2–knots) via doubly pointed trisection diagrams, showing that such descriptions are unique up to stabilisation and handleslides, and we describe how to obtain trisection diagrams for certain cut-and-paste operations along 2–knots directly from doubly pointed trisection diagrams. The operations described are classical surgery, Gluck surgery, blowdown, and (±4)–rational blowdown, and we illustrate our techniques and results with many examples. 
    more » « less
  5. Fukui, Toshizumi; Koike, Satoshi; Paunescu, Laurențiu (Ed.)
    The Heegaard genus of a 3-manifold, as well as the growth of Heegaard genus in its finite sheeted cover spaces, has extensively been studied in terms of algebraic, geometric and topological properties of the 3-manifold. This note shows that analogous results concerning the trisection genus of a smooth, orientable 4-manifold have more general answers than their counterparts for 3-manifolds. In the case of hyperbolic 4-manifolds, upper and lower bounds are given in terms of volume and a trisection of the Davis manifold is described. 
    more » « less