skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantitative cytotoxicity analysis of antibacterial Janus nanoparticles in immune and cancer cells
Background Nanoparticles (NPs) hold promise as alternatives to antibiotics in the fight against multi-drug-resistant bacteria. However, concerns about their cytotoxicity, particularly their effects on mammalian cells, must be thoroughly addressed to ensure therapeutic safety. Amphiphilic Janus NPs, which have segregated hydrophobic and polycationic ligands on two hemispheres, have previously been shown to exhibit potent antibacterial activity. Methods In this study, we evaluated the cytotoxicity of amphiphilic Janus NPs in immune and cancer cell lines. Cytotoxicity assays were performed to assess the effects of Janus NPs on cell viability and membrane integrity, with a particular focus on how internalization of the nanoparticles influenced cellular responses. Results The results revealed that both immune and cancer cells exhibited negligible cytotoxic effects when exposed to Janus NPs. However, phagocytic immune cells demonstrated greater susceptibility to membrane damage and viability loss, suggesting that internalization plays a significant role in nanoparticle-induced cytotoxicity. Conclusions Amphiphilic Janus NPs show great potential as highly effective antibacterial agents with minimal cytotoxicity. While immune cells may be more vulnerable to nanoparticle-induced damage due to their internalization capacity, these findings support the further investigation of Janus NPs for clinical applications.  more » « less
Award ID(s):
2534273
PAR ID:
10629864
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
F1000 Research
Date Published:
Journal Name:
F1000Research
Volume:
13
ISSN:
2046-1402
Page Range / eLocation ID:
1340
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The interaction between nanoparticles (NPs) and bacterial cell envelopes is crucial for designing effective antibacterial materials against multi-drug-resistant pathogens. However, the current understanding assumes a uniform bacterial cell wall. This study challenges that assumption by investigating how bacterial cell wall curvature impacts antibacterial NP action. Focusing on Janus NPs, which feature segregated hydrophobic and polycationic ligands and previously demonstrated high efficacy against diverse bacteria, we found that these NPs preferentially target and disrupt bacterial poles. Experimental and computational approaches reveal that curvature at E. coli poles induces conformational changes in lipopolysaccharide (LPS) polymers on the outer membrane, exposing underlying lipids for NP-mediated disruption. We establish that curvature-induced targeting by Janus NPs depends on the outer membrane composition and is most pronounced at physiologically relevant LPS densities. This work demonstrates that high-curvature regions of bacterial cell walls are “weak spots” for Janus NPs, thereby aiding the development of more effective targeted therapies. 
    more » « less
  2. In this study, we report a novel platinum–doxorubicin conjugate that demonstrates superior therapeutic indices to cisplatin, doxorubicin, or their combination, which are commonly used in cancer treatment. This new molecular structure (1) was formed by conjugating an amphiphilic Pt(IV) prodrug of cisplatin with doxorubicin. Due to its amphiphilic nature, the Pt(IV)–doxorubicin conjugate effectively penetrates cell membranes, delivering both cisplatin and doxorubicin payloads intracellularly. The intracellular accumulation of these payloads was assessed using graphite furnace atomic absorption spectrometry and fluorescence imaging. Since the therapeutic effects of cisplatin and doxorubicin stem from their ability to target nuclear DNA, we hypothesized that the amphiphilic Pt(IV)–doxorubicin conjugate (1) would effectively induce nuclear DNA damage toward killing cancer cells. To test this hypothesis, we used flow the cytometric analysis of phosphorylated H2AX (γH2AX), a biomarker of nuclear DNA damage. The Pt(IV)–doxorubicin conjugate (1) markedly induced γH2AX in treated MDA-MB-231 breast cancer cells, showing higher levels than cells treated with either cisplatin or doxorubicin alone. Furthermore, MTT cell viability assays revealed that the enhanced DNA-damaging capability of complex 1 resulted in superior cytotoxicity and selectivity against human cancer cells compared to cisplatin, doxorubicin, or their combination. Overall, the development of this amphiphilic Pt(IV)–doxorubicin conjugate represents a new form of combination therapy with improved therapeutic efficacy. 
    more » « less
  3. This study is focused on the selective delivery and release of the plant-based anticancer compound eugenol (EUG) in colorectal cancer cells (CRC). EUG is an apoptotic and anti-growth compound in diverse malignant tumors, including CRC. However, EUG’s rapid metabolization, excretion, and side effects on normal cells at higher dosages are major limitations of its therapeutic potential. To address this problem, we developed a “smart” enzyme-responsive nanoparticle (eNP) loaded with EUG that exposes tumors to a high level of the drug while keeping its concentration low among healthy cells. We demonstrated that EUG induces apoptosis in CRC cells irrespective of their grades in a dose- and time-dependent manner. EUG significantly decreases cancer cell migration, invasion, and the population of colon cancer stem cells, which are key players in tumor metastasis and drug resistance. The “smart” eNPs–EUG show a high affinity to cancer cells with rapid internalization with no affinity toward normal colon epithelial cells. NPs–EUG enhanced the therapeutic efficacy of EUG measured by a cell viability assay and showed no toxicity effect on normal cells. The development of eNPs–EUG is a promising strategy for innovative anti-metastatic therapeutics. 
    more » « less
  4. Abstract White blood cells (WBCs) are immune cells that play essential roles in critical diseases including cancers, infections, and inflammatory disorders. Their dynamic and diverse functions have inspired the development of WBC membrane‐coated nanoparticles (denoted “WBC‐NPs”), which are formed by fusing the plasma membranes of WBCs, such as macrophages, neutrophils, T cells, and natural killer cells, onto synthetic nanoparticle cores. Inheriting the entire source cell antigens, WBC‐NPs act as source cell decoys and simulate their broad biointerfacing properties with intriguing therapeutic potentials. Herein, the recent development and medical applications of WBC‐NPs focusing on four areas, including WBC‐NPs as carriers for drug delivery, as countermeasures for biological neutralization, as nanovaccines for immune modulation, and as tools for the isolation of circulating tumor cells and fundamental research is reviewed. Overall, the recent development and studies of WBC‐NPs have established the platform as versatile nanotherapeutics and tools with broad medical application potentials. 
    more » « less
  5. Cancer is a global health problem in need of transformative treatment solutions for improved patient outcomes. Many conventional treatments prove ineffective and produce undesirable side effects because they are incapable of targeting only cancer cells within tumors and metastases post administration. There is a desperate need for targeted therapies that can maximize treatment success and minimize toxicity. Nanoparticles (NPs) with tunable physicochemical properties have potential to meet the need for high precision cancer therapies. At the forefront of nanomedicine is biomimetic nanotechnology, which hides NPs from the immune system and provides superior targeting capabilities by cloaking NPs in cell-derived membranes. Cancer cell membranes expressing “markers of self” and “self-recognition molecules” can be removed from cancer cells and wrapped around a variety of NPs, providing homotypic targeting and circumventing the challenge of synthetically replicating natural cell surfaces. Compared to unwrapped NPs, cancer cell membrane-wrapped NPs (CCNPs) provide reduced accumulation in healthy tissues and higher accumulation in tumors and metastases. The unique biointerfacing capabilities of CCNPs enable their use as targeted nanovehicles for enhanced drug delivery, localized phototherapy, intensified imaging, or more potent immunotherapy. This review summarizes the state-of-the-art in CCNP technology and provides insight to the path forward for clinical implementation. 
    more » « less