The problem of the two-dimensional motion of a charged particle with constant mass in the presence of a uniform constant perpendicular magnetic field features in several undergraduate and graduate quantum physics textbooks. This problem is very important to studies of two-dimensional materials that manifest quantum Hall behavior, as evidenced by several major discoveries over the last few years. Many real experimental samples are more complicated due to the anisotropic mass of the electrons. In this work, we provide the exact solution to this problem by means of a clever scaling of coordinates. Calculations are done for a symmetric gauge of the magnetic field. This study allows a broad audience of students and teachers to understand the mathematical techniques that lead to the solution of this quantum problem.
more »
« less
Exact solution for a charged particle in an inductive time-dependent increasing magnetic field
Abstract We study the classical motion of a charged particle in presence of an inductively increasing time-dependent magnetic field as the one created inside a resistor-inductor series circuit driven by a voltage source. The inductor is treated as an infinite solenoid. In such a scenario, the expression for the time-dependent magnetic field generated when the circuit is turned on can be easily derived. We consider the case study of two-dimensional motion since the generalization to three-dimensions is elementary. The resulting differential equations for the two-dimensional motion of the charged particle are solved by using a particular method which relies in deployment of complex variables. The ensuing motion has interesting features that highlight the challenges faced in studies of charged particles in a time-dependent magnetic field. This study has applications in magnetic plasma confinement, where understanding charged particle dynamics in time-varying magnetic fields helps optimize stability and energy retention in fusion devices.
more »
« less
- Award ID(s):
- 2001980
- PAR ID:
- 10629950
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Physica Scripta
- Volume:
- 100
- Issue:
- 8
- ISSN:
- 0031-8949
- Format(s):
- Medium: X Size: Article No. 085991
- Size(s):
- Article No. 085991
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The problem of the charged-particle motion in an axisymmetric magnetic geometry is used to assess the validity of higher-order Hamiltonian guiding-center theory, which includes higher-order corrections associated with gyrogauge invariance as well as guiding-center polarization induced by magnetic-field non-uniformity. Two axisymmetric magnetic geometries are considered: a magnetic mirror geometry and a simple tokamak geometry. When a magnetically confined charged-particle orbit is regular (i.e., its guiding-center magnetic moment is adiabatically invariant), the guiding-center approximation, which conserves both energy and azimuthal canonical angular momentum, is shown to be faithful to the particle orbit when higher-order corrections are taken into account.more » « less
-
Superclimbing dynamics is the signature feature of transverse quantum fluids describing wide superfluid one-dimensional interfaces and/or edges with negligible Peierls barrier. Using Lagrangian formalism, we show how the essence of the superclimb phenomenon—dynamic conjugation of the fields of the superfluid phase and geometric shape—clearly manifests itself via characteristic modes of autonomous motion of the insulating domain (“droplet”) with superclimbing edges. In the translation invariant case and in the absence of supercurrent along the edge, the droplet demonstrates ballistic motion with the velocity-dependent shape and zero bulk currents. In an isotropic trapping potential, the droplet features a doubly degenerate sloshing mode. The period of the ground-state evolution of the superfluid phase (dictating the frequency of the AC Josephson effect) is sensitive to the geometry of the droplet. The supercurrent along the edge dramatically changes the droplet dynamics: The motion acquires features resembling that of a two-dimensional charged particle interacting with a perpendicular magnetic field. In a linear external potential (uniform force field), the state with a supercurrent demonstrates a spectacular gyroscopic effect—uniform motion in the perpendicular to the force direction. Published by the American Physical Society2024more » « less
-
The problem of the charged-particle motion in crossed electric and magnetic fields is investigated, and the validity of the guiding-center representation is assessed in comparison with the exact particle dynamics. While the magnetic field is considered to be straight and uniform, the (perpendicular) radial electric field is nonuniform. The Hamiltonian guiding-center theory of charged-particle motion is presented for arbitrary radial electric fields, and explicit examples are provided for the case of a linear radial electric field.more » « less
-
Abstract Microrobots have the potential for diverse applications, including targeted drug delivery and minimally invasive surgery. Despite advancements in microrobot design and actuation strategies, achieving precise control over their motion remains challenging due to the dominance of viscous drag, system disturbances, physicochemical heterogeneities, and stochastic Brownian forces. Here, a precise control over the interfacial motion of model microellipsoids is demonstrated using time‐varying rotating magnetic fields. The impacts of microellipsoid aspect ratio, field characteristics, and magnetic properties of the medium and the particle on the motion are investigated. The role of mobile micro‐vortices generated is highlighted by rotating microellipsoids in capturing, transporting, and releasing cargo objects. Furthermore, an approach is presented for controlled navigation through mazes based on real‐time particle and obstacle sensing, path planning, and magnetic field actuation without human intervention. The study introduces a mechanism of directing motion of microparticles using rotating magnetic fields, and a control scheme for precise navigation and delivery of micron‐sized cargo using simple microellipsoids as microbots.more » « less
An official website of the United States government
