skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Observation of a pseudoscalar excess at the top quark pair production threshold
Abstract A search for resonances in top quark pair ( t t ) production in final states with two charged leptons and multiple jets is presented, based on proton–proton collision data collected by the CMS experiment at the CERN LHC at s = 13 TeV , corresponding to 138 fb−1. The analysis explores the invariant mass of the t t system and two angular observables that provide direct access to the correlation of top quark and antiquark spins. A significant excess of events is observed near the kinematic t t threshold compared to the non-resonant production predicted by fixed-order perturbative quantum chromodynamics (pQCD). The observed enhancement is consistent with the production of a color-singlet pseudoscalar ( 1 S 0 [ 1 ] ) quasi-bound toponium state, as predicted by non-relativistic quantum chromodynamics. Using a simplified model for 1 S 0 [ 1 ] toponium, the cross section of the excess above the pQCD prediction is measured to be 8.8 1.4 + 1.2 pb more » « less
Award ID(s):
2121686
PAR ID:
10629956
Author(s) / Creator(s):
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Reports on Progress in Physics
Volume:
88
Issue:
8
ISSN:
0034-4885
Format(s):
Medium: X Size: Article No. 087801
Size(s):
Article No. 087801
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The production of a pair of τ leptons via photon–photon fusion, γ γ τ τ , is observed for the first time in proton–proton collisions, with a significance of 5.3 standard deviations. This observation is based on a data set recorded with the CMS detector at the LHC at a center-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 138 fb−1. Events with a pair of τ leptons produced via photon–photon fusion are selected by requiring them to be back-to-back in the azimuthal direction and to have a minimum number of charged hadrons associated with their production vertex. The τ leptons are reconstructed in their leptonic and hadronic decay modes. The measured fiducial cross section of γ γ τ τ is σ obs fid = 12.4 3.1 + 3.8 fb . Constraints are set on the contributions to the anomalous magnetic moment ( a τ ) and electric dipole moments ( d τ ) of the τ lepton originating from potential effects of new physics on the γ τ τ vertex: a τ = 0.0009 0.0031 + 0.0032 and | d τ | < 2.9 × 10 17 e cm (95% confidence level), consistent with the standard model. 
    more » « less
  2. Abstract A test of lepton flavor universality in B ± K ± μ + μ and B ± K ± e + e decays, as well as a measurement of differential and integrated branching fractions of a nonresonant B ± K ± μ + μ decay are presented. The analysis is made possible by a dedicated data set of proton-proton collisions at s = 13 TeV recorded in 2018, by the CMS experiment at the LHC, using a special high-rate data stream designed for collecting about 10 billion unbiased b hadron decays. The ratio of the branching fractions B ( B ± K ± μ + μ ) to B ( B ± K ± e + e ) is determined from the measured double ratio R ( K ) of these decays to the respective branching fractions of the B ± J / ψ K ± with J / ψ μ + μ and e + e decays, which allow for significant cancellation of systematic uncertainties. The ratio R ( K ) is measured in the range 1.1 < q 2 < 6.0 GeV 2 , whereqis the invariant mass of the lepton pair, and is found to be R ( K ) = 0.78 0.23 + 0.47 , in agreement with the standard model expectation R ( K ) 1 . This measurement is limited by the statistical precision of the electron channel. The integrated branching fraction in the sameq2range, B ( B ± K ± μ + μ ) = ( 12.42 ± 0.68 ) × 10 8 , is consistent with the present world-average value and has a comparable precision. 
    more » « less
  3. Abstract We analyze four epochs of Hubble Space Telescope imaging over 18 yr for the Draco dwarf spheroidal galaxy. We measure precise proper motions for hundreds of stars and combine these with existing line-of-sight (LOS) velocities. This provides the first radially resolved 3D velocity dispersion profiles for any dwarf galaxy. These constrain the intrinsic velocity anisotropy and resolve the mass–anisotropy degeneracy. We solve the Jeans equations in oblate axisymmetric geometry to infer the mass profile. We find the velocity dispersion to be radially anisotropic along the symmetry axis and tangentially anisotropic in the equatorial plane, with a globally averaged value β B ¯ = 0.20 0.53 + 0.28 , (where 1 – β B v tan 2 / v rad 2 in 3D). The logarithmic dark matter (DM) density slope over the observed radial range, Γdark, is 0.83 0.37 + 0.32 , consistent with the inner cusp predicted in ΛCDM cosmology. As expected given Draco’s low mass and ancient star formation history, it does not appear to have been dissolved by baryonic processes. We rule out cores larger than 487, 717, and 942 pc at 1σ, 2σ, and 3σconfidence, respectively, thus imposing important constraints on the self-interacting DM cross section. Spherical models yield biased estimates for both the velocity anisotropy and the inferred slope. The circular velocity at our outermost data point (900 pc) is 24.19 2.97 + 6.31 km s 1 . We infer a dynamical distance of 75.37 4.00 + 4.73 kpc and show that Draco has a modest LOS rotation, with v / σ = 0.22 ± 0.09 . Our results provide a new stringent test of the so-called “cusp–core” problem that can be readily extended to other dwarfs. 
    more » « less
  4. Abstract Cosmic reionization was the last major phase transition of hydrogen from neutral to highly ionized in the intergalactic medium (IGM). Current observations show that the IGM is significantly neutral atz> 7 and largely ionized byz∼ 5.5. However, most methods to measure the IGM neutral fraction are highly model dependent and are limited to when the volume-averaged neutral fraction of the IGM is either relatively low ( x ¯ H I 10 3 ) or close to unity ( x ¯ H I 1 ). In particular, the neutral fraction evolution of the IGM at the critical redshift range ofz= 6–7 is poorly constrained. We present new constraints on x ¯ H I atz∼ 5.1–6.8 by analyzing deep optical spectra of 53 quasars at 5.73 <z< 7.09. We derive model-independent upper limits on the neutral hydrogen fraction based on the fraction of “dark” pixels identified in the Lyαand Lyβforests, without any assumptions on the IGM model or the intrinsic shape of the quasar continuum. They are the first model-independent constraints on the IGM neutral hydrogen fraction atz∼ 6.2–6.8 using quasar absorption measurements. Our results give upper limits of x ¯ H I ( z = 6.3 ) < 0.79 ± 0.04 (1σ), x ¯ H I ( z = 6.5 ) < 0.87 ± 0.03 (1σ), and x ¯ H I ( z = 6.7 ) < 0.94 0.09 + 0.06 (1σ). The dark pixel fractions atz> 6.1 are consistent with the redshift evolution of the neutral fraction of the IGM derived from Planck 2018. 
    more » « less
  5. Abstract Polyatomic molecules have been identified as sensitive probes of charge-parity violating and parity violating physics beyond the Standard Model (BSM). For example, many linear triatomic molecules are both laser-coolable and have parity doublets in the ground electronic X ˜ 2 Σ + ( 010 ) state arising from the bending vibration, both features that can greatly aid BSM searches. Understanding the X ˜ 2 Σ + ( 010 ) state is a crucial prerequisite to precision measurements with linear polyatomic molecules. Here, we characterize the fundamental bending vibration of 174 YbOH using high-resolution optical spectroscopy on the nominally forbidden X ˜ 2 Σ + ( 010 ) A ˜ 2 Π 1 / 2 ( 000 ) transition at 588 nm. We assign 39 transitions originating from the lowest rotational levels of the X ˜ 2 Σ + ( 010 ) state, and accurately model the state’s structure with an effective Hamiltonian using best-fit parameters. Additionally, we perform Stark and Zeeman spectroscopy on the X ˜ 2 Σ + ( 010 ) state and fit the molecule-frame dipole moment to D m o l = 2.16 ( 1 ) Dand the effective electrong-factor to g S = 2.07 ( 2 ) . Further, we use an empirical model to explain observed anomalous line intensities in terms of interference from spin–orbit and vibronic perturbations in the excited A ˜ 2 Π 1 / 2 ( 000 ) state. Our work is an essential step toward searches for BSM physics in YbOH and other linear polyatomic molecules. 
    more » « less