Abstract Observations of tidal disruption events (TDEs) show signs of nitrogen enrichment reminiscent of other astrophysical sources such as active galactic nuclei and star-forming galaxies. Given that TDEs probe the gas from a single star, it is possible to test whether the observed enrichment is consistent with expectations from the CNO cycle by looking at the observed nitrogen/carbon (N/C) abundance ratios. Given that ≈20% of solar-mass stars (and an even larger fraction of more massive stars) live in close binaries, it is worthwhile to also consider what TDEs from stars influenced by binary evolution would look like. We show here that TDEs from stars stripped of their hydrogen-rich (and nitrogen-poor) envelopes through previous binary-induced mass loss can produce much higher observable N/C enhancements than even TDEs from massive stars. Additionally, we predict that the time dependence of the N/C abundance ratio in the mass fallback rate of stripped stars will follow the inverse behavior of main-sequence stars, enabling a more accurate characterization of the disrupted star.
more »
« less
This content will become publicly available on February 6, 2026
Formation of Stripped Stars from Stellar Collisions in Galactic Nuclei
Abstract Tidal disruption events (TDEs) are an important way to probe the properties of stellar populations surrounding supermassive black holes. The observed spectra of several TDEs, such as ASASSN-14li, show high nitrogen-to-carbon (N/C) abundance ratios, leading to questions about their progenitors. Disrupting an intermediate- or high-mass star that has undergone CNO processing, increasing the nitrogen in its core, could lead to an enhanced nitrogen TDE. Galactic nuclei present a conducive environment for high-velocity stellar collisions that can lead to high mass loss, stripping the carbon- and hydrogen-rich envelopes of the stars and leaving behind the enhanced nitrogen cores. TDEs of these stripped stars may therefore exhibit even more extreme nitrogen enhancement. Using the smoothed particle hydrodynamics codeStarSmasher, we provide a parameter space study of high-velocity stellar collisions involving intermediate-mass stars, analyzing the composition of the collision products. We conclude that high-velocity stellar collisions can form products that have abundance ratios similar to those observed in the motivating TDEs. Furthermore, we show that stars which have not experienced high CNO processing can yield low-mass collision products that retain even higher N/C abundance ratios. We analytically estimate the mass fallback for a typical TDE of several collision products to demonstrate consistency between our models and TDE observations. Lastly, we discuss how the extended collision products, with high central to average density ratios, can be related to repeated partial TDEs like ASASSN-14ko and G objects in the Galactic center.
more »
« less
- PAR ID:
- 10630390
- Publisher / Repository:
- The Astrophysical Journal
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 980
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 109
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Active galactic nuclei (AGNs) can funnel stars and stellar remnants from the vicinity of the galactic center into the inner plane of the AGN disk. Stars reaching this inner region can be tidally disrupted by the stellar-mass black holes in the disk. Such micro tidal disruption events (micro-TDEs) could be a useful probe of stellar interaction with the AGN disk. We find that micro-TDEs in AGNs occur at a rate of ∼170 Gpc −3 yr −1 . Their cleanest observational probe may be the electromagnetic detection of tidal disruption in AGNs by heavy supermassive black holes ( M • ≳ 10 8 M ⊙ ) that cannot tidally disrupt solar-type stars. The reconstructed rate of such events from observations, nonetheless, appears to be much lower than our estimated micro-TDE rate. We discuss two such micro-TDE candidates observed to date (ASASSN-15lh and ZTF19aailpwl).more » « less
-
Abstract Tidal disruption events (TDEs) provide a unique opportunity to probe the stellar populations around supermassive black holes (SMBHs). By combining light-curve modeling with spectral line information and knowledge about the stellar populations in the host galaxies, we are able to constrain the properties of the disrupted star for three TDEs. The TDEs in our sample have UV spectra, and measurements of the UV Niiito Ciiiline ratios enabled estimates of the nitrogen-to-carbon abundance ratios for these events. We show that the measured nitrogen line widths are consistent with originating from the disrupted stellar material dispersed by the central SMBH. We find that these nitrogen-to-carbon abundance ratios necessitate the disruption of moderately massive stars (≳1–2M⊙). We determine that these moderately massive disruptions are overrepresented by a factor of ≳102when compared to the overall stellar population of the post-starburst galaxy hosts. This implies that SMBHs are preferentially disrupting higher mass stars, possibly due to ongoing top-heavy star formation in nuclear star clusters or to dynamical mechanisms that preferentially transport higher mass stars to their tidal radii.more » « less
-
ABSTRACT We report the All-Sky Automated Survey for SuperNovae discovery of the tidal disruption event (TDE) ASASSN-23bd (AT 2023clx) in NGC 3799, a LINER galaxy with no evidence of strong active galactic nucleus (AGN) activity over the past decade. With a redshift of z = 0.01107 and a peak ultraviolet (UV)/optical luminosity of (5.4 ± 0.4) × 1042 erg s−1, ASASSN-23bd is the lowest-redshift and least-luminous TDE discovered to date. Spectroscopically, ASASSN-23bd shows H α and He i emission throughout its spectral time series, there are no coronal lines in its near-infrared spectrum, and the UV spectrum shows nitrogen lines without the strong carbon and magnesium lines typically seen for AGN. Fits to the rising ASAS-SN light curve show that ASASSN-23bd started to brighten on MJD 59988$$^{+1}_{-1}$$, ∼9 d before discovery, with a nearly linear rise in flux, peaking in the g band on MJD $$60 \, 000^{+3}_{-3}$$. Scaling relations and TDE light curve modelling find a black hole mass of ∼106 M⊙, which is on the lower end of supermassive black hole masses. ASASSN-23bd is a dim X-ray source, with an upper limit of $$L_{0.3-10\, \mathrm{keV}} \lt 1.0\times 10^{40}$$ erg s−1 from stacking all Swift observations prior to MJD 60061, but with soft (∼0.1 keV) thermal emission with a luminosity of $$L_{0.3-2 \, \mathrm{keV}}\sim 4\times 10^{39}$$ erg s−1 in XMM-Newton observations on MJD 60095. The rapid (t < 15 d) light curve rise, low UV/optical luminosity, and a luminosity decline over 40 d of ΔL40 ≈ −0.7 dex make ASASSN-23bd one of the dimmest TDEs to date and a member of the growing ‘Low Luminosity and Fast’ class of TDEs.more » « less
-
Abstract Stars grazing supermassive black holes (SMBHs) on bound orbits may survive tidal disruption, causing periodic flares. Inspired by the recent discovery of the periodic nuclear transient ASASSN-14ko, a promising candidate for a repeating tidal disruption event (TDE), we study the tidal deformation of stars approaching SMBHs on eccentric orbits. With both analytical and hydrodynamic methods, we show the overall tidal deformation of a star is similar to that in a parabolic orbit provided that the eccentricity is above a critical value. This allows one to make use of existing simulation libraries from parabolic encounters to calculate the mass fallback rate in eccentric TDEs. We find the flare structures of eccentric TDEs show a complicated dependence on both the SMBH mass and the orbital period. For stars orbiting SMBHs with relatively short periods, we predict significantly shorter-lived duration flares than those in parabolic TDEs, which can be used to predict repeating events if the mass of the SMBH can be independently measured. Using an adiabatic mass-loss model, we study the flare evolution over multiple passages, and show the evolved stars can survive many more passages than main-sequence stars. We apply this theoretical framework to the repeating TDE candidate ASASSN-14ko and suggest that its recurrent flares originate from a moderately massive ( M ≳ 1 M ⊙ ), extended (likely ≈10 R ⊙ ), evolved star on a grazing, bound orbit around the SMBH. Future hydrodynamic simulations of multiple tidal interactions will enable realistic models on the individual flare structure and the evolution over multiple flares.more » « less
An official website of the United States government
