skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 29, 2026

Title: Recovering wastewater RNA for virome sequencing by systematically optimized tangential-flow ultrafiltration and Nanotrap microbiome particles
ABSTRACT Municipal wastewater harbors diverse RNA viruses, which are responsible for many emerging and reemerging diseases in humans, animals, and plants. Although genomic sequencing can be a high-throughput approach for profiling the RNA virome in wastewater, wastewater processing methods often influence sequencing outcomes. Here, we systematically evaluated two wastewater processing methods, tangential-flow ultrafiltration (TFF) and Nanotrap Microbiome A Particles, for detecting the target RNA virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) via amplicon sequencing and characterizing the RNA virome using whole-transcriptome shotgun sequencing. Our results from paired comparison tests showed that the TFF and Nanotrap methods recovered similar SARS-CoV-2 variants at the lineage level (analysis of similarity [ANOSIM]R= −0.012,P= 0.874). Optimizing automated procedures for the Nanotrap method and concentration factors for the TFF method was critical for achieving high-depth and high-breadth coverage of the target virus genome. Notably, the two methods enriched distinct RNA viromes from the same wastewater samples (ANOSIMR= 0.260,P= 0.002), with TFF samples showing 22-fold and 7-fold higher relative abundances ofReoviridaeandCoronaviridae, respectively. These differences are likely due to the distinct virus concentration mechanisms employed by each method, which are influenced by liquid-solid partitioning of virus particles and interactions of viral surface proteins with ligands. Our findings underscore the importance of optimizing wastewater processing methods for genomic monitoring and have implications for broader environmental applications.IMPORTANCEWastewater genomic sequencing is an emerging technology for tracking viral infections within communities. However, different methods for concentrating viruses and extracting nucleic acids can influence the recoveries of RNA virome from wastewater. An in-depth understanding of virus concentration mechanisms and their impact on sequencing data quality and bioinformatic output would be critical to guide method selection and optimization. Specifically, this study systematically evaluated tangential-flow ultrafiltration and Nanotrap microbiome particles for their application to sequence SARS-CoV-2 and whole RNA virome from wastewater. Both methods yielded high-quality sequencing data for amplicon sequencing of SARS-CoV-2, but their outcomes diverged in the recovered RNA virome. We identified RNA viruses that are preferentially recovered by each of these two methods and proposed considerations of method selection for future studies of wastewater RNA virome.  more » « less
Award ID(s):
2200173
PAR ID:
10630736
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Editor(s):
Elkins, Christopher A
Publisher / Repository:
ASM
Date Published:
Journal Name:
Applied and Environmental Microbiology
ISSN:
0099-2240
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. NA (Ed.)
    The sequencing of human virus genomes from wastewater samples is an efficient method for tracking viral transmission and evolution at the community level. However, this requires the recovery of viral nucleic acids of high quality. We developed a reusable tangential-flow filtration system to concentrate and purify viruses from wastewater for genome sequencing. A pilot study was conducted with 94 wastewater samples from four local sewersheds, from which viral nucleic acids were extracted, and the whole genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was sequenced using the ARTIC V4.0 primers. Our method yielded a high probability (0.9) of recovering complete or near-complete SARS-CoV-2 genomes (>90% coverage at 10× depth) from wastewater when the COVID-19 incidence rate exceeded 33 cases per 100 000 people. The relative abundances of sequenced SARS-CoV-2 variants followed the trends observed from patient-derived samples. We also identified SARS-CoV-2 lineages in wastewater that were underrepresented or not present in the clinical whole-genome sequencing data. The developed tangential-flow filtration system can be easily adopted for the sequencing of other viruses in wastewater, particularly those at low concentrations. 
    more » « less
  2. null (Ed.)
    Abstract Background Wastewater-based epidemiology (WBE) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can be an important source of information for coronavirus disease 2019 (COVID-19) management during and after the pandemic. Currently, governments and transportation industries around the world are developing strategies to minimize SARS-CoV-2 transmission associated with resuming activity. This study investigated the possible use of SARS-CoV-2 RNA wastewater surveillance from airline and cruise ship sanitation systems and its potential use as a COVID-19 public health management tool. Methods Aircraft and cruise ship wastewater samples (n = 21) were tested for SARS-CoV-2 using two virus concentration methods, adsorption–extraction by electronegative membrane (n = 13) and ultrafiltration by Amicon (n = 8), and five assays using reverse-transcription quantitative polymerase chain reaction (RT-qPCR) and RT-droplet digital PCR (RT-ddPCR). Representative qPCR amplicons from positive samples were sequenced to confirm assay specificity. Results SARS-CoV-2 RNA was detected in samples from both aircraft and cruise ship wastewater; however concentrations were near the assay limit of detection. The analysis of multiple replicate samples and use of multiple RT-qPCR and/or RT-ddPCR assays increased detection sensitivity and minimized false-negative results. Representative qPCR amplicons were confirmed for the correct PCR product by sequencing. However, differences in sensitivity were observed among molecular assays and concentration methods. Conclusions The study indicates that surveillance of wastewater from large transport vessels with their own sanitation systems has potential as a complementary data source to prioritize clinical testing and contact tracing among disembarking passengers. Importantly, sampling methods and molecular assays must be further optimized to maximize detection sensitivity. The potential for false negatives by both wastewater testing and clinical swab testing suggests that the two strategies could be employed together to maximize the probability of detecting SARS-CoV-2 infections amongst passengers. 
    more » « less
  3. Climate change is significantly impacting the geographic range of many animal species and their associated microorganisms, hence influencing emergence of vector-borne diseases. Mosquito-borne viruses represent a potential major reservoir of human pathogens, highlighting the need for improved understanding of ecological factors associated with variation in the mosquito viral community (virome). Here, a subtractive hybridization method coupled with RNAseq of individual mosquito specimens was used to profile RNA viromes of individual co-occurringAedes albopictusandAedes vexansmosquitoes across a 2,000 km spatial scale. Samples were collected and archived by the National Ecological Observatory Network (NEON) from four ecologically variable sites in the Southeastern United States between 2018 and 2019. Results of multivariate analysis suggest that mosquito species are an important factor in RNA viral community composition. Significantly higher viral diversity was detected inA. albopictuscompared toA.vexans. However, season, year, and site of sample collection did not show strong association with virome profiles, supporting the hypothesis that factors unique to the mosquito host species (e.g., larval habitat or vector competence) influence the structure of mosquito viromes. 
    more » « less
  4. null (Ed.)
    We describe the complete capsid of a genotype C1-like Enterovirus A71 variant recovered from wastewater in a neighborhood in the greater Tempe, Arizona area (Southwest United States) in May 2020 using a pan-enterovirus amplicon-based high-throughput sequencing strategy. The variant seems to have been circulating for over two years, but its sequence has not been documented in that period. As the SARS-CoV-2 pandemic has resulted in changes in health-seeking behavior and overwhelmed pathogen diagnostics, our findings highlight the importance of wastewater-based epidemiology (WBE ) as an early warning system for virus surveillance. 
    more » « less
  5. Swanson, Michele S. (Ed.)
    ABSTRACT Wastewater surveillance (WS), when coupled with advanced molecular techniques, offers near real-time monitoring of community-wide transmission of SARS-CoV-2 and allows assessing and mitigating COVID-19 outbreaks, by evaluating the total microbial assemblage in a community. Composite wastewater samples (24 h) were collected weekly from a manhole between December 2020 and November 2021 in Maryland, USA. RT-qPCR results showed concentrations of SARS-CoV-2 RNA recovered from wastewater samples reflected incidence of COVID-19 cases. When a drastic increase in COVID-19 was detected in February 2021, samples were selected for microbiome analysis (DNA metagenomics, RNA metatranscriptomics, and targeted SARS-CoV-2 sequencing). Targeted SARS-CoV-2 sequencing allowed for detection of important genetic mutations, such as spike: K417N, D614G, P681H, T716I, S982A, and D1118H, commonly associated with increased cell entry and reinfection. Microbiome analysis (DNA and RNA) provided important insight with respect to human health-related factors, including detection of pathogens and their virulence/antibiotic resistance genes. Specific microbial species comprising the wastewater microbiome correlated with incidence of SARS-CoV-2 RNA, suggesting potential association with SARS-CoV-2 infection. Climatic conditions, namely, temperature, were related to incidence of COVID-19 and detection of SARS-CoV-2 in wastewater, having been monitored as part of an environmental risk score assessment carried out in this study. In summary, the wastewater microbiome provides useful public health information, and hence, a valuable tool to proactively detect and characterize pathogenic agents circulating in a community. In effect, metagenomics of wastewater can serve as an early warning system for communicable diseases, by providing a larger source of information for health departments and public officials. IMPORTANCE Traditionally, testing for COVID-19 is done by detecting SARS-CoV-2 in samples collected from nasal swabs and/or saliva. However, SARS-CoV-2 can also be detected in feces of infected individuals. Therefore, wastewater samples can be used to test all individuals of a community contributing to the sewage collection system, i.e., the infrastructure, such as gravity pipes, manholes, tanks, lift stations, control structures, and force mains, that collects used water from residential and commercial sources and conveys the flow to a wastewater treatment plant. Here, we profile community wastewater collected from a manhole, detect presence of SARS-CoV-2, identify genetic mutations of SARS-CoV-2, and perform COVID-19 risk score assessment of the study area. Using metagenomics analysis, we also detect other microorganisms (bacteria, fungi, protists, and viruses) present in the samples. Results show that by analyzing all microorganisms present in wastewater, pathogens circulating in a community can provide an early warning for contagious diseases. 
    more » « less