This data set covers the Anaktuvuk River fire site and maps drained lake basins in this area as described by Jones et al (2015). The data set is derived from airborne Light Detection and Ranging (LiDAR) data acquired in 2009 and 2014. The classification of drained lake basins is based on digital terrain models (DTMs) created from the classified LiDAR data and using the a topographic position index (TPI). The TPI output was manually categorized relative to existing surficial geology maps and refined into the following terrain units: (1) drained lake basins, (2) yedoma uplands, (3) rocky uplands, (4) glaciated upland, (5) river floodplain and (6) tundra stream gulches. The drained lake basin class is the subject of this data set publication. Jones, B., Grosse, G., Arp, C. et al. Recent Arctic tundra fire initiates widespread thermokarst development. Sci Rep 5, 15865 (2015). https://doi.org/10.1038/srep15865
more »
« less
This content will become publicly available on June 1, 2026
Impacts of geographic variability and geologic history on the distribution of post-settlement alluvium (PSA) across the upper Midwest, USA
Accelerated floodplain sedimentation related to agricultural development of uplands has produced postsettlement alluvium (PSA) along rivers throughout the upper Midwest, U.S.A. Landscape characteristics, surficial sediments, and soils in the region vary geographically in relation to differences in geologic history, yet the extent to which this geographic variability influences PSA accumulation remains unexplored. This study uses existing data to assess how non-dimensional PSA thickness varies with landscape characteristics, surficial sediments, soils and climate. Geographic variability is associated with three subregions: 1) areas glaciated during the Late Wisconsin Episode (LWE), 2) areas glaciated during Pre-Illinois and Illinois Episodes (PI&IE), and 3) the Paleozoic Plateau (PP), an area where evidence of Quaternary glaciation is highly localized and does not influence geomorphic characteristics of the landscape. These subregions differ significantly in average geomorphic characteristics, including mean watershed slope (WS), mean local relief (LR), fraction of non-contributing area (NCA), pre-settlement drainage density (DD), and mean normalized river steepness (KSN). Native vegetation type also differs systematically between the subregions, creating significant differences in the frequency of alfisols (Alfi) and molisols (Mol). Thickness of last glacial loess (Loess) also varies across the region, although not systematically between the subregions identified. Non-dimensional PSA thickness differs significantly among the subregions, increasing systematically with landscape age, reflecting faster upland erosion rates and stronger connectivity of uplands to river corridors in older landscapes relative to more recently glaciated landscapes. Nondimensional PSA thickness is significantly positively correlated with LR, KSN, WS, Loess, Alfi, and Mol and significantly negatively correlated with NCA. Non-visibly distinct PSA is present in some LWE watersheds characterized by significantly lower KSN and WS relative to other LWE watersheds in which PSA is visibly distinct. PSA thickness and visibility reflect catchment-wide landscape characteristics and watershed-scale river steepness, which emphasize the importance of geographic setting, geological history, and landscape geomorphic characteristics for understanding historical river sediment dynamics. Spatial variability in PSA thickness also serves as an indicator of river system sensitivity to land-use change, providing insight into the relative impact of humans on rivers within different geographic settings.
more »
« less
- Award ID(s):
- 2012850
- PAR ID:
- 10630770
- Editor(s):
- NA
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- CATENA
- Volume:
- 254
- Issue:
- C
- ISSN:
- 0341-8162
- Page Range / eLocation ID:
- 108939
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This data set covers the Anaktuvuk River fire site and maps drained lake basins in this area as described by Jones et al (2015). The data set is derived from airborne Light Detection and Ranging (LiDAR) data acquired in 2009 and 2014. The classification of drained lake basins is based on digital terrain models (DTMs) created from the classified LiDAR data and using the a topographic position index (TPI). The TPI output was manually categorized relative to existing surficial geology maps and refined into the following terrain units: (1) drained lake basins, (2) yedoma uplands, (3) rocky uplands, (4) glaciated upland, (5) river floodplain and (6) tundra stream gulches. The drained lake basin class is the subject of this data set publication. Jones, B., Grosse, G., Arp, C. et al. Recent Arctic tundra fire initiates widespread thermokarst development. Sci Rep 5, 15865 (2015). https://doi.org/10.1038/srep15865more » « less
-
Abstract We present 17 new 10Be erosion rates from southern Peru sampled across an extreme orographic rainfall gradient. Using a rainfall-weighted variant of the normalized channel steepness index, ksnQ, we show that channel steepness values, and thus topography, are adjusted to spatially varying rainfall. Rocks with similar physical characteristics define distinct relationships between ksnQ and erosion rate (E), suggesting ksnQ is also resolving lithologic variations in erodibility. However, substantial uncertainty exists in parameters describing these relationships. By combining our new data with 38 published erosion rates from Peru and Bolivia, we collapse the range of compatible parameter values and resolve robust, nonlinear ksnQ–E relationships suggestive of important influences of erosional thresholds, rock properties, sediment characteristics, and temporal runoff variability. In contrast, neither climatic nor lithologic effects are clear using the traditional channel steepness metric, ksn. Our results highlight that accounting for spatial rainfall variations is essential for disentangling the multiple influences of climate, lithology, and tectonics common in mountain landscapes, which is a necessary first step toward greater understanding of how these landscapes evolve.more » « less
-
Abstract Intense precipitation or seismic events can generate clustered mass movement processes across a landscape. These rare events have significant impacts on the landscape, however, the rarity of such events leads to uncertainty in how they impact the entire geomorphic system over a range of timescales. Taiwan is steep, tectonically active, and prone to landslide and debris flows, especially when exposed to heavy rainfall events. Typhoon Morakot made landfall in Taiwan in August of 2009, causing widespread landslides in southern Taiwan. The south to north trend in valley relief in southern Taiwan leads to spatial variability in landslide susceptibility providing an opportunity to infer the long‐term impact of such landslide events on channel morphology. We use pre‐ and post‐typhoon imagery to quantify the propagating impact of this event on channel width as the debris is routed through the landscape. The results show the importance of cascading hazards from landslides on landscape evolution based on patterns of channel width (both pre‐ and post‐typhoon) and hillslope gradients in 20 basins along strike in southern Taiwan. Prior to Typhoon Morakot, the river channels in the central part of the study area were about 3–10 times wider than the channels in the south. Following the typhoon, aggradation and widening was also a maximum in these central to northern basins where hillslope gradients and channel steepness is high, accentuating the pre‐typhoon pattern. The results further show that the narrowest channels are located where channel steepness is the lowest, an observation inconsistent with a detachment‐limited model for river evolution. We infer this pattern is indicative of a strong role of sediment supply, and associated landslide events, on long‐term channel evolution. These findings have implications across a range of spatial and temporal scales including understanding the cascade of hazards in steep landscapes and geomorphic interpretation of channel morphology. Copyright © 2018 John Wiley & Sons, Ltd.more » « less
-
We explore how rock properties and channel morphology vary with rock type in Last Chance Canyon, Guadalupe Mountains, New Mexico, USA. The rocks here are composed of horizontally to near-horizontally interbedded carbonate and sandstone. This study focuses on first- and second-order channel sections, where the streams have a lower channel steepness index (ksn) upstream and transition to higher ksn values downstream. We hypothesize that differences in bed thickness and rock strength influence ksn values, both locally by influencing bulk bedrock strength and also nonlocally through the production of coarse sediment. We collected discontinuity intensity data (the length of bedding planes and fractures per unit area), Schmidt hammer rebound measurements, and measured the largest boulder at every 12.2 m elevation contour to test this hypothesis. Bedrock and boulder mineralogy were determined using a lab-based carbonate dissolution method. High-resolution orthomosaics and digital surface models (DSMs) were generated from drone and ground-based photogrammetry. The orthomosaics were used to map channel sections with exposed bedrock. The United States Geological Survey (USGS) 10 m digital elevation models (DEMs) were used to measure channel slope and hillslope relief. We find that discontinuity intensity is negatively correlated with Schmidt hammer rebound values in sandstone bedrock. Channel steepness tends to be higher where reaches are primarily incising through more thickly bedded carbonate bedrock and lower where more thinly bedded sandstone is exposed. Bedrock properties also influence channel morphology indirectly, through coarse sediment input from adjacent hillslopes. Thickly bedded rock layers on hillslopes erode to contribute larger colluvial sediment to adjacent channels, and these reaches have higher ksn values. Larger and more competent carbonate sediment armors both the carbonate and the more erodible sandstone and reduces steepness contrasts across rock types. We interpret that in the relatively steep, high-level ksn downstream channel sections, the slope is primarily controlled by the coarse alluvial cover. We further posit that the upstream low-level ksn reaches have a base level that is fixed by the steep downstream reaches, resulting in a stable configuration, where channel slopes have adjusted to lithologic differences and/or sediment armor.more » « less
An official website of the United States government
