An assessment of the production, distribution and fate of highly branched isoprenoid (HBI) biomarkers produced by sea ice and pelagic diatoms is necessary to interpret their detection and proportions in the northern Bering and Chukchi Seas. HBIs measured in surface sediments collected from 2012 to 2017 were used to determine the distribution and seasonality of the biomarkers relative to sea ice patterns. A northward gradient of increasing ice algae deposition was observed with localized occurrences of elevated IP25 (sympagic HBI) concentrations from 68–70˚N and consistently strong sympagic signatures from 71–72.5˚N. A declining sympagic signature was observed from 2012 to 2017 in the northeast Chukchi Sea, coincident with declining sea ice concentrations. HBI fluxes were investigated on the northeast Chukchi shelf with a moored sediment trap deployed from August 2015 to July 2016. Fluxes of sea ice exclusive diatoms (Nitzschia frigida and Melosira arctica) and HBI producing taxa (Pleurosigma, Haslea and Rhizosolenia spp.) were measured to confirm HBI sources and ice associations. IP25 was detected year-round, increasing in March 2016 (10 ng m-2 d-1) and reaching a maximum in July 2016 (1331 ng m-2 d-1). Snowmelt triggered the release of sea ice algae into the water column in May 2016, while under-ice pelagic production contributed to the diatom export in June and July 2016. Sea ice diatom fluxes were strongly correlated with the IP25 flux, however associations between pelagic diatoms and HBI fluxes were inconclusive. Bioturbation likely facilitates sustained burial of sympagic organic matter on the shelf despite the occurrence of pelagic diatom blooms. These results suggest that sympagic diatoms may sustain the food web through winter on the northeast Chukchi shelf. The reduced relative proportions of sympagic HBIs in the northern Bering Sea are likely driven by sea ice persistence in the region.
more »
« less
Sea Ice Proxy App
This is the repository for an R Shiny App that allows users to create sea ice records for the Bering and Chukchi seas from diatom data. Users will upload a data set of diatom percentages and the app will return predictions of spring (March, April, May, June_ sea ice concentrations based on a generalized additive model of surface sediment assemblages in the Bering and Chukchi Seas. Please direct questions to Beth Caissie bcaissie@usgs.gov.
more »
« less
- Award ID(s):
- 2110923
- PAR ID:
- 10631193
- Publisher / Repository:
- U.S. Geological Survey
- Date Published:
- Subject(s) / Keyword(s):
- sea ice diatoms Bering Sea Chukchi Sea Shiny GAM
- Format(s):
- Medium: X
- Right(s):
- Creative Commons Zero v1.0 Universal
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract BackgroundClimate change is warming the Arctic faster than the rest of the planet. Shifts in whale migration timing have been linked to climate change in temperate and sub-Arctic regions, and evidence suggests Bering–Chukchi–Beaufort (BCB) bowhead whales (Balaena mysticetus) might be overwintering in the Canadian Beaufort Sea. MethodsWe used an 11-year timeseries (spanning 2009–2021) of BCB bowhead whale presence in the southern Chukchi Sea (inferred from passive acoustic monitoring) to explore relationships between migration timing and sea ice in the Chukchi and Bering Seas. ResultsFall southward migration into the Bering Strait was delayed in years with less mean October Chukchi Sea ice area and earlier in years with greater sea ice area (p = 0.04, r2 = 0.40). Greater mean October–December Bering Sea ice area resulted in longer absences between whales migrating south in the fall and north in the spring (p < 0.01, r2 = 0.85). A stepwise shift after 2012–2013 shows some whales are remaining in southern Chukchi Sea rather than moving through the Bering Strait and into the northwestern Bering Sea for the winter. Spring northward migration into the southern Chukchi Sea was earlier in years with less mean January–March Chukchi Sea ice area and delayed in years with greater sea ice area (p < 0.01, r2 = 0.82). ConclusionsAs sea ice continues to decline, northward spring-time migration could shift earlier or more bowhead whales may overwinter at summer feeding grounds. Changes to bowhead whale migration could increase the overlap with ships and impact Indigenous communities that rely on bowhead whales for nutritional and cultural subsistence.more » « less
-
Over thousands of years, Indigenous hunters in the Bering and Chukchi seas have adapted to changes in weather, sea ice, and sea state that influence their access to walruses. In recent decades, 10 however, those conditions have been changing at unprecedented rates. Safely adapting to changing conditions will be essential to the well-being of communities.more » « less
-
This is the raw data collected in the Bering and Chukchi Seas that support our publication in Nature Communications - Earth and Environment 2022. The Arctic Ocean is experiencing a net loss of sea ice. Ice-free Septembers are predicted by 2050 with intensified seasonal melt and freshening. Accurate CO2 uptake estimates rely on meticulous assessments of carbonate parameters including total alkalinity. The third largest contributor to oceanic alkalinity is boron (as borate ions). Boron has been shown to be conservative in open ocean systems, and the boron to salinity ratio (boron/salinity) is therefore used to account for boron alkalinity in lieu of in situ boron measurements. Here we provide this ratio in the marginal ice zone of the Bering and Chukchi seas during late spring of 2021. We found considerable variation in born/salinity values in ice cores and brine, representing either excesses or deficits of boron relative to salinity. This variability should be considered when accounting for borate contributions to total alkalinity (up to 10 µmol kg-1) in low salinity melt regions.more » « less
-
Abstract Predictability of seasonal sea ice advance in the Chukchi Sea has been investigated in the context of ocean heat transport from the Bering Strait; however, the underlying physical processes have yet to be fully clarified. Using the Pan-Arctic Ice–Ocean Modeling and Assimilation System (PIOMAS) reanalysis product (1979–2016), we examined seasonal predictability of sea ice advance in early winter (November–December) and its source using canonical correlation analysis. It was found that 2-month leading (September–October) surface heat flux and ocean heat advection is the major predictor for interannual variability of sea ice advance. Surface heat flux is related to the atmospheric cooling process, which has influenced sea ice area in the southeastern Chukchi Sea particularly in the 1980s and 1990s. Anomalous surface heat flux is induced by strong northeasterly winds related to the east Pacific/North Pacific teleconnection pattern. Ocean heat advection, which is related to fluctuation of volume transport in the Bering Strait, leads to decrease in the sea ice area in the northwestern Chukchi Sea. Diagnostic analysis revealed that interannual variability of the Bering Strait volume transport is governed by arrested topographic waves (ATWs) forced by southeasterly wind stress along the shelf of the East Siberian Sea. The contribution of ocean heat flux to sea ice advance has increased since the 2000s; therefore, it is suggested that the major factor influencing interannual variability of sea ice advance in early winter has shifted from atmospheric cooling to ocean heat advection processes. Significance Statement Predictability of sea ice advance in the marginal Arctic seas in early winter is a crucial issue regarding future projections of the midlatitude winter climate and marine ecosystem. This study examined seasonal predictability of sea ice advance in the Chukchi Sea in early winter using a statistical technique and historical model simulation data. We identified that atmospheric cooling and ocean heat transport are the two main predictors of sea ice advance, and that the impact of the latter has become amplified since the 2000s. Our new finding suggests that the precise information on wind-driven ocean currents and temperatures is crucial for the skillful prediction of interannual variability of sea ice advance under present and future climatic regimes.more » « less
An official website of the United States government
