skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 14 until 2:00 AM ET on Saturday, November 15 due to maintenance. We apologize for the inconvenience.


Title: Modulation of metastable ensemble dynamics explains optimal coding at moderate arousal in auditory cortex
Performance during perceptual decision-making exhibits an inverted-U relationship with arousal, but the underlying network mechanisms remain unclear. Here, we recorded from auditory cortex (A1) of behaving mice during passive tone presentation, while tracking arousal via pupillometry. We found that tone discriminability in A1 ensembles was optimal at intermediate arousal, revealing a population-level neural correlate of the inverted-U relationship. We explained this arousal-dependent coding using a spiking network model with a clustered architecture. Specifically, we show that optimal stimulus discriminability is achieved near a transition between a multi-attractor phase with metastable cluster dynamics (low arousal) and a single-attractor phase (high arousal). Additional signatures of this transition include arousal-induced reductions of overall neural variability and the extent of stimulus-induced variability quenching, which we observed in the empirical data. Our results elucidate computational principles underlying interactions between pupil-linked arousal, sensory processing, and neural variability, and suggest a role for phase transitions in explaining nonlinear modulations of cortical computations.  more » « less
Award ID(s):
2238247
PAR ID:
10631316
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
bioRxiv
Date Published:
Format(s):
Medium: X
Institution:
bioRxiv
Sponsoring Org:
National Science Foundation
More Like this
  1. In bistable perception, observers experience alternations between two interpretations of an unchanging stimulus. Neurophysiological studies of bistable perception typically partition neural measurements into stimulus-based epochs and assess neuronal differences between epochs based on subjects' perceptual reports. Computational studies replicate statistical properties of percept durations with modeling principles like competitive attractors or Bayesian inference. However, bridging neuro-behavioral findings with modeling theory requires the analysis of single-trial dynamic data. Here, we propose an algorithm for extracting nonstationary timeseries features from single-trial electrocorticography (ECoG) data. We applied the proposed algorithm to 5-min ECoG recordings from human primary auditory cortex obtained during perceptual alternations in an auditory triplet streaming task (six subjects: four male, two female). We report two ensembles of emergent neuronal features in all trial blocks. One ensemble consists of periodic functions that encode a stereotypical response to the stimulus. The other comprises more transient features and encodes dynamics associated with bistable perception at multiple time scales: minutes (within-trial alternations), seconds (duration of individual percepts), and milliseconds (switches between percepts). Within the second ensemble, we identified a slowly drifting rhythm that correlates with the perceptual states and several oscillators with phase shifts near perceptual switches. Projections of single-trial ECoG data onto these features establish low-dimensional attractor-like geometric structures invariant across subjects and stimulus types. These findings provide supporting neural evidence for computational models with oscillatory-driven attractor-based principles. The feature extraction techniques described here generalize across recording modality and are appropriate when hypothesized low-dimensional dynamics characterize an underlying neural system. SIGNIFICANCE STATEMENTIrrespective of the sensory modality, neurophysiological studies of multistable perception have typically investigated events time-locked to the perceptual switching rather than the time course of the perceptual states per se. Here, we propose an algorithm that extracts neuronal features of bistable auditory perception from largescale single-trial data while remaining agnostic to the subject's perceptual reports. The algorithm captures the dynamics of perception at multiple timescales, minutes (within-trial alternations), seconds (durations of individual percepts), and milliseconds (timing of switches), and distinguishes attributes of neural encoding of the stimulus from those encoding the perceptual states. Finally, our analysis identifies a set of latent variables that exhibit alternating dynamics along a low-dimensional manifold, similar to trajectories in attractor-based models for perceptual bistability. 
    more » « less
  2. Veauthier, Christian (Ed.)
    Frequent cortical arousal is associated with cardiovascular dysfunction among people with sleep-disordered breathing. Changes in heart rate variability (HRV) can represent pathological conditions associated with autonomic nervous system dysfunction. Previous studies showed changes in cardiac activity due to cortical arousals. However, few studies have examined the instantaneous association between cortical arousal and HRV in an ethnically diverse population. In this study, we included 1,069 subjects’ full night ECG signals from unattended polysomnography in the Multi-Ethnic Study of Atherosclerosis dataset. An automated deep learning tool was employed to annotate arousal events from ECG signals. The etiology (e.g., respiratory, or spontaneous) of each arousal event was classified through a temporal analysis. Time domain HRVs and mean heart rate were calculated on pre-, intra-, and post-arousal segments of a 25-s period for each arousal event. We observed that heart rate and HRVs increased during the arousal onsets in the intra-arousal segments, regardless of arousal etiology. Furthermore, HRVs response to cortical arousal occurrence differed according to gender and the sleep stages in which arousal occurred. The more intense HRVs variation due to arousal in females can contribute to a potentially stronger association between arousal burden and long-term mortality. The excessive abrupt sympathetic tone elevation in REM caused by arousal may provide insights on the association between sleep and sudden cardiac death. 
    more » « less
  3. Equivariant representation is necessary for the brain and artificial perceptual systems to faithfully represent the stimulus under some (Lie) group transformations. However, it remains unknown how recurrent neural circuits in the brain represent the stimulus equivariantly, nor the neural representation of abstract group operators. The present study uses a one-dimensional (1D) translation group as an example to explore the general recurrent neural circuit mechanism of the equivariant stimulus representation. We found that a continuous attractor network (CAN), a canonical neural circuit model, self-consistently generates a continuous family of stationary population responses (attractors) that represents the stimulus equivariantly. Inspired by the Drosophila’s compass circuit, we found that the 1D translation operators can be represented by extra speed neurons besides the CAN, where speed neurons’ responses represent the moving speed (1D translation group parameter), and their feedback connections to the CAN represent the translation generator (Lie algebra). We demonstrated that the network responses are consistent with experimental data. Our model for the first time demonstrates how recurrent neural circuitry in the brain achieves equivariant stimulus representation. 
    more » « less
  4. The growing population of older adults emphasizes the need to develop interventions that prevent or delay some of the cognitive decline that accompanies aging. In particular, as memory impairment is the foremost cognitive deficit affecting older adults, it is vital to develop interventions that improve memory function. This study addressed the problem of false memories in aging by training older adults to use details of past events during memory retrieval to distinguish targets from related lures. We examined the neural basis of a retrieval-based monitoring strategy by assessing changes in univariate BOLD activity and discriminability of targets and lures pre and post training. Results showed training-related decreases in false memory rates with no alterations to hit rates. Both training and practice were associated with altered recruitment of a frontoparietal monitoring network as well as benefits to neural discriminability within network regions. Participants with lower baseline neural discriminability between target and lure items exhibited the largest changes in neural discriminability. Collectively, our results highlight the benefits of training for reductions of false memories in aging. They also provide an understanding of the neural mechanisms that support these reductions. 
    more » « less
  5. Narratives can synchronize neural and physiological signals between individuals, but the relationship between these signals, and the underlying mechanism, is unclear. We hypothesized a top-down effect of cognition on arousal and predicted that auditory narratives will drive not only brain signals but also peripheral physiological signals. We find that auditory narratives entrained gaze variation, saccade initiation, pupil size, and heart rate. This is consistent with a top-down effect of cognition on autonomic function. We also hypothesized a bottom-up effect, whereby autonomic physiology affects arousal. Controlled breathing affected pupil size, and heart rate was entrained by controlled saccades. Additionally, fluctuations in heart rate preceded fluctuations of pupil size and brain signals. Gaze variation, pupil size, and heart rate were all associated with anterior-central brain signals. Together, these results suggest bidirectional causal effects between peripheral autonomic function and central brain circuits involved in the control of arousal. 
    more » « less