We consider optimal transport-based distributionally robust optimization (DRO) problems with locally strongly convex transport cost functions and affine decision rules. Under conventional convexity assumptions on the underlying loss function, we obtain structural results about the value function, the optimal policy, and the worst-case optimal transport adversarial model. These results expose a rich structure embedded in the DRO problem (e.g., strong convexity even if the non-DRO problem is not strongly convex, a suitable scaling of the Lagrangian for the DRO constraint, etc., which are crucial for the design of efficient algorithms). As a consequence of these results, one can develop efficient optimization procedures that have the same sample and iteration complexity as a natural non-DRO benchmark algorithm, such as stochastic gradient descent.
more »
« less
This content will become publicly available on June 4, 2026
Extended Convex Lifting for Policy Optimization of Optimal and Robust Control
Many optimal and robust control problems are nonconvex and potentially nonsmooth in their policy optimization forms. In this paper, we introduce the Extended Convex Lifting (ECL) framework, which reveals hidden convexity in classical optimal and robust control problems from a modern optimization perspective. Our ECL framework offers a bridge between nonconvex policy optimization and convex reformulations. Despite non-convexity and non-smoothness, the existence of an ECL for policy optimization not only reveals that the policy optimization problem is equivalent to a convex problem, but also certifies a class of first-order non-degenerate stationary points to be globally optimal. We further show that this ECL framework encompasses many benchmark control problems, including LQR, state-feedback and output-feedback H-infinity robust control. We believe that ECL will also be of independent interest for analyzing nonconvex problems beyond control.
more »
« less
- PAR ID:
- 10631415
- Editor(s):
- Ozay, Necmiye; Balzano, Laura; Panagou, Dimitra; Abate, Alessandro
- Publisher / Repository:
- Proceedings of Machine Learning Research
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Partial Integral Equation (PIE) framework provides a unified algebraic representation for use in analysis, control, and estimation of infinite-dimensional systems. However, the presence of input delays results in a PIE representation with dependence on the derivative of the control input, u˙. This dependence complicates the problem of optimal state-feedback control for systems with input delay – resulting in a bilinear optimization problem. In this paper, we present two strategies for convexification of the H∞-optimal state-feedback control problem for systems with input delay. In the first strategy, we use a generalization of Young's inequality to formulate a convex optimization problem, albeit with some conservatism. In the second strategy, we filter the actuator signal – introducing additional dynamics, but resulting in a convex optimization problem without conservatism. We compare these two optimal control strategies on four example problems, solving the optimization problem using the latest release of the PIETOOLS software package for analysis, control and simulation of PIEs.more » « less
-
Abstract Distributionally Favorable Optimization (DFO) is a framework for decision-making under uncertainty, with applications spanning various fields, including reinforcement learning, online learning, robust statistics, chance-constrained programming, and two-stage stochastic optimization without complete recourse. In contrast to the traditional Distributionally Robust Optimization (DRO) paradigm, DFO presents a unique challenge– the application of the inner infimum operator often fails to retain the convexity. In light of this challenge, we study the tractability and complexity of DFO. We establish sufficient and necessary conditions for determining when DFO problems are tractable (i.e., solvable in polynomial time) or intractable (i.e., not solvable in polynomial time). Despite the typical nonconvex nature of DFO problems, our results show that they are mixed-integer convex programming representable (MICP-R), thereby enabling solutions via standard optimization solvers. Finally, we numerically validate the efficacy of our MICP-R formulations.more » « less
-
We introduce a generic scheme to solve nonconvex optimization problems using gradient-based algorithms originally designed for minimizing convex functions. Even though these methods may originally require convexity to operate, the proposed approach allows one to use them without assuming any knowledge about the convexity of the objective. In general, the scheme is guaranteed to produce a stationary point with a worst-case efficiency typical of first-order methods, and when the objective turns out to be convex, it automatically accelerates in the sense of Nesterov and achieves near-optimal convergence rate in function values. We conclude the paper by showing promising experimental results obtained by applying our approach to incremental algorithms such as SVRG and SAGA for sparse matrix factorization and for learning neural networksmore » « less
-
null; null; null; null (Ed.)Many imaging problems can be formulated as inverse problems expressed as finite-dimensional optimization problems. These optimization problems generally consist of minimizing the sum of a data fidelity and regularization terms. In Darbon (SIAM J. Imag. Sci. 8:2268–2293, 2015), Darbon and Meng, (On decomposition models in imaging sciences and multi-time Hamilton-Jacobi partial differential equations, arXiv preprint arXiv:1906.09502, 2019), connections between these optimization problems and (multi-time) Hamilton-Jacobi partial differential equations have been proposed under the convexity assumptions of both the data fidelity and regularization terms. In particular, under these convexity assumptions, some representation formulas for a minimizer can be obtained. From a Bayesian perspective, such a minimizer can be seen as a maximum a posteriori estimator. In this chapter, we consider a certain class of non-convex regularizations and show that similar representation formulas for the minimizer can also be obtained. This is achieved by leveraging min-plus algebra techniques that have been originally developed for solving certain Hamilton-Jacobi partial differential equations arising in optimal control. Note that connections between viscous Hamilton-Jacobi partial differential equations and Bayesian posterior mean estimators with Gaussian data fidelity terms and log-concave priors have been highlighted in Darbon and Langlois, (On Bayesian posterior mean estimators in imaging sciences and Hamilton-Jacobi partial differential equations, arXiv preprint arXiv:2003.05572, 2020). We also present similar results for certain Bayesian posterior mean estimators with Gaussian data fidelity and certain non-log-concave priors using an analogue of min-plus algebra techniques.more » « less
An official website of the United States government
