A comparative study is presented to solve the inverse problem in elasticity for the shear modulus (stiffness) distribution utilizing two constitutive equations: (1) linear elasticity assuming small strain theory, and (2) finite elasticity with a hyperelastic neo-Hookean material model. Assuming that a material undergoes large deformations and material nonlinearity is assumed negligible, the inverse solution using (2) is anticipated to yield better results than (1). Given the fact that solving a linear elastic model is significantly faster than a nonlinear model and more robust numerically, we posed the following question: How accurately could we map the shear modulus distribution with a linear elastic model using small strain theory for a specimen undergoing large deformations? To this end, experimental displacement data of a silicone composite sample containing two stiff inclusions of different sizes under uniaxial displacement controlled extension were acquired using a digital image correlation system. The silicone based composite was modeled both as a linear elastic solid under infinitesimal strains and as a neo-Hookean hyperelastic solid that takes into account geometrically nonlinear finite deformations. We observed that the mapped shear modulus contrast, determined by solving an inverse problem, between inclusion and background was higher for the linear elastic model as compared to that of the hyperelastic one. A similar trend was observed for simulated experiments, where synthetically computed displacement data were produced and the inverse problem solved using both, the linear elastic model and the neo-Hookean material model. In addition, it was observed that the inverse problem solution was inclusion size-sensitive. Consequently, an 1-D model was introduced to broaden our understanding of this issue. This 1-D analysis revealed that by using a linear elastic approach, the overestimation of the shear modulus contrast between inclusion and background increases with the increase of external loads and target shear modulus contrast. Finally, this investigation provides valuable information on the validity of the assumption for utilizing linear elasticity in solving inverse problems for the spatial distribution of shear modulus associated with soft solids undergoing large deformations. Thus, this work could be of importance to characterize mechanical property variations of polymer based materials such as rubbers or in elasticity imaging of tissues for pathology.
more »
« less
This content will become publicly available on October 1, 2026
The circular disc made of linear elastic incompressible material and the 'bathyscaphe lesson'
A linear elastic circular disc is analyzed under a self-equilibrated system of loads applied along its boundary. A distinctive feature of the investigation, conducted using complex variable analysis, is the assumption that the material is incompressible (in its linearized approximation), rendering the governing equations formally identical to those of Stokes flow in viscous fluids. After deriving a general solution to the problem, an isoperimetric constraint is introduced at the boundary to enforce inextensibility. This effect can be physically realized, for example, by attaching an inextensible elastic rod with negligible bending stiffness to the perimeter. Although the combined imposition of material incompressibility and boundary inextensibility theoretically prevents any deformation of the disc, it is shown that the problem still admits non-trivial solutions. This apparent paradox is resolved by recognizing the approximations inherent in the linearized theory, as confirmed by a geometrically nonlinear numerical analysis. Nonetheless, the linear solution retains significance: it may represent a valid stress distribution within a rigid system and can identify critical conditions of interest for design applications.
more »
« less
- Award ID(s):
- 2112894
- PAR ID:
- 10631454
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- International journal of solids and structures
- Volume:
- 321
- ISSN:
- 0020-7683
- Page Range / eLocation ID:
- 113548
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
An analytical solution is derived for the bifurcations of an elastic disc that is constrained on the boundary with an isoperimetric Cosserat coating. The latter is treated as an elastic circular rod, either perfectly or partially bonded (with a slip interface in the latter case) and is subjected to three different types of uniformly distributed radial loads (including hydrostatic pressure). The proposed solution technique employs complex potentials to treat the disc’s interior and incremental Lagrangian equations to describe the prestressed elastic rod modelling the coating. The bifurcations of the disc occur with modes characterized by different circumferential wavenumbers, ranging between ovalization and high-order waviness, as a function of the ratio between the elastic stiffness of the disc and the bending stiffness of its coating. The presented results find applications in various fields, such as coated fibres, mechanical rollers, and the growth and morphogenesis of plants and fruits.more » « less
-
We consider the linearized third order SMGTJ equation defined on a sufficiently smooth boundary domain in and subject to either Dirichlet or Neumann rough boundary control. Filling a void in the literature, we present a direct general system approach based on the vector state solution {position, velocity, acceleration}. It yields, in both cases, an explicit representation formula: input solution, based on the s.c. group generator of the boundary homogeneous problem and corresponding elliptic Dirichlet or Neumann map. It is close to, but also distinctly and critically different from, the abstract variation of parameter formula that arises in more traditional boundary control problems for PDEs L‐T.6. Through a duality argument based on this explicit formula, we provide a new proof of the optimal regularity theory: boundary control {position, velocity, acceleration} with low regularity boundary control, square integrable in time and space.more » « less
-
A scheme based on the approximate solution determined by the method of multiple scales is proposed for the identification of nonlinear material parameters of a piezoelectric disc. The theoretical approach is experimentally validated to determine these parameters through dynamic electrical actuation. The identified material parameters are then used to investigate the nonlinear electro-elastic behavior of the disk, used as a receiver, in an ultrasound acoustic energy transfer system.more » « less
-
The plane strain problem of an isotropic elastic matrix subjected to uniform far-field load and containing multiple stiff prestressed arcs located on the same circle is considered. The boundary conditions for the arcs are described by those of either Gurtin–Murdoch or Steigmann–Ogden theories in which the arcs are endowed with their own elastic energies. The material parameters for each arc can in general be different. The problem is reduced to the system of real variables hypersingular boundary integral equations in terms of two scalar unknowns expressed via the components of the stress tensors of the arcs. The unknowns are approximated by the series of trigonometric functions that are multiplied by the square root weight functions to allow for automatic incorporation of the tip conditions. The coefficients in series are found from the system of linear algebraic equations that are solved using the collocation method. The expressions for the stress intensity factors are derived and numerical examples are presented to illustrate the influence of governing dimensionless parameters.more » « less
An official website of the United States government
