Federated Learning (FL) revolutionizes collaborative machine learning among Internet of Things (IoT) devices by enabling them to train models collectively while preserving data privacy. FL algorithms fall into two primary categories: synchronous and asynchronous. While synchronous FL efficiently handles straggler devices, its convergence speed and model accuracy can be compromised. In contrast, asynchronous FL allows all devices to participate but incurs high communication overhead and potential model staleness. To overcome these limitations, the paper introduces a semi-synchronous FL framework that uses client tiering based on computing and communication latencies. Clients in different tiers upload their local models at distinct frequencies, striking a balance between straggler mitigation and communication costs. Building on this, the paper proposes the Dynamic client clustering, bandwidth allocation, and local training for semi-synchronous Federated learning (DecantFed) algorithm to dynamically optimize client clustering, bandwidth allocation, and local training workloads in order to maximize data sample processing rates in FL. DecantFed dynamically optimizes client clustering, bandwidth allocation, and local training workloads for maximizing data processing rates in FL. It also adapts client learning rates according to their tiers, thus addressing the model staleness issue. Extensive simulations using benchmark datasets like MNIST and CIFAR-10, under both IID and non-IID scenarios, demonstrate DecantFed’s superior performance. It outperforms FedAvg and FedProx in convergence speed and delivers at least a 28% improvement in model accuracy, compared to FedProx.
more »
« less
This content will become publicly available on August 4, 2026
Fedband: Adaptive Federated Learning with Bandwidth Constraints
Federated Learning (FL) enables model training across decentralized clients while preserving data privacy. However, bandwidth constraints limit the volume of information exchanged, making communication efficiency a critical challenge. In addition, non- IID data distributions require fairness-aware mechanisms to prevent performance degradation for certain clients. Existing sparsification techniques often apply fixed compression ratios uniformly, ignoring variations in client importance and bandwidth. We propose FedBand, a dynamic bandwidth allocation framework that prioritizes clients based on their contribution to the global model. Unlike conventional approaches, FedBand does not enforce uniform client participation in every communication round. Instead, it allocates more bandwidth to clients whose local updates deviate significantly from the global model, enabling them to transmit a greater number of parameters. Clients with less impactful updates contribute proportionally less or may defer transmission, reducing unnecessary overhead while maintaining generalizability. By optimizing the trade-off between communication efficiency and learning performance, FedBand substantially reduces transmission costs while preserving model accuracy. Experiments on non-IID CIFAR-10 and UTMobileNet2021 datasets, demonstrate that FedBand achieves up to 99.81% bandwidth savings per round while maintaining accuracies close to that of an unsparsified model (80% on CIFAR- 10, 95% on UTMobileNet), despite transmitting less than 1% of the model parameters in each round. Moreover, FedBand accelerates convergence by 37.4%, further improving learning efficiency under bandwidth constraints. Mininet emulations further show a 42.6% reduction in communication costs and a 65.57% acceleration in convergence compared to baseline methods, validating its real-world efficiency. These results demonstrate that adaptive bandwidth allocation can significantly enhance the scalability and communication efficiency of federated learning, making it more viable for real- world, bandwidth-constrained networking environments.
more »
« less
- Award ID(s):
- 2106982
- PAR ID:
- 10631473
- Editor(s):
- Li, R; Chowdhury, K
- Publisher / Repository:
- IEEE International Conference on Computers Communications and Networks (ICCCN)
- Date Published:
- Format(s):
- Medium: X
- Location:
- Tokyo, Japan
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Due to the often limited communication bandwidth of edge devices, most existing federated learning (FL) methods randomly select only a subset of devices to participate in training at each communication round. Compared with engaging all the available clients, such a random-selection mechanism could lead to significant performance degradation on non-IID (independent and identically distributed) data. In this paper, we present our key observation that the essential reason resulting in such performance degradation is the class-imbalance of the grouped data from randomly selected clients. Based on this observation, we design an efficient heterogeneity-aware client sampling mechanism, namely, Federated Class-balanced Sampling (Fed-CBS), which can effectively reduce class-imbalance of the grouped dataset from the intentionally selected clients. We first propose a measure of class-imbalance which can be derived in a privacy-preserving way. Based on this measure, we design a computationefficient client sampling strategy such that the actively selected clients will generate a more classbalanced grouped dataset with theoretical guarantees. Experimental results show that Fed-CBS outperforms the status quo approaches in terms of test accuracy and the rate of convergence while achieving comparable or even better performance than the ideal setting where all the available clients participate in the FL training.more » « less
-
null (Ed.)In federated learning, heterogeneity in the clients' local datasets and computation speeds results in large variations in the number of local updates performed by each client in each communication round. Naive weighted aggregation of such models causes objective inconsistency, that is, the global model converges to a stationary point of a mismatched objective function which can be arbitrarily different from the true objective. This paper provides a general framework to analyze the convergence of federated heterogeneous optimization algorithms. It subsumes previously proposed methods such as FedAvg and FedProx and provides the first principled understanding of the solution bias and the convergence slowdown due to objective inconsistency. Using insights from this analysis, we propose FedNova, a normalized averaging method that eliminates objective inconsistency while preserving fast error convergence.more » « less
-
Federated Learning (FL) has emerged as an effective paradigm for distributed learning systems owing to its strong potential in exploiting underlying data characteristics while preserving data privacy. In cases of practical data heterogeneity among FL clients in many Internet-of-Things (IoT) applications over wireless networks, however, existing FL frameworks still face challenges in capturing the overall feature properties of local client data that often exhibit disparate distributions. One approach is to apply generative adversarial networks (GANs) in FL to address data heterogeneity by integrating GANs to regenerate anonymous training data without exposing original client data to possible eavesdropping. Despite some successes, existing GAN-based FL frameworks still incur high communication costs and elicit other privacy concerns, limiting their practical applications. To this end, this work proposes a novel FL framework that only applies partial GAN model sharing. This new PS-FedGAN framework effectively addresses heterogeneous data distributions across clients and strengthens privacy preservation at reduced communication costs, especially over wireless networks. Our analysis demonstrates the convergence and privacy benefits of the proposed PS-FEdGAN framework. Through experimental results based on several well-known benchmark datasets, our proposed PS-FedGAN demonstrates strong potential to tackle FL under heterogeneous (non-IID) client data distributions, while improving data privacy and lowering communication overhead.more » « less
-
Federated learning (FL) is a distributed learning paradigm that allows multiple decentralized clients to collaboratively learn a common model without sharing local data. Although local data is not exposed directly, privacy concerns nonetheless exist as clients' sensitive information can be inferred from intermediate computations. Moreover, such information leakage accumulates substantially over time as the same data is repeatedly used during the iterative learning process. As a result, it can be particularly difficult to balance the privacy-accuracy trade-off when designing privacy-preserving FL algorithms. This paper introduces Upcycled-FL, a simple yet effective strategy that applies first-order approximation at every even round of model update. Under this strategy, half of the FL updates incur no information leakage and require much less computational and transmission costs. We first conduct the theoretical analysis on the convergence (rate) of Upcycled-FL and then apply two perturbation mechanisms to preserve privacy. Extensive experiments on both synthetic and real-world data show that the Upcycled-FL strategy can be adapted to many existing FL frameworks and consistently improve the privacy-accuracy trade-offmore » « less
An official website of the United States government
