skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Primal-Dual Extrapolation Methods for Monotone Inclusions Under Local Lipschitz Continuity
In this paper, we consider a class of monotone inclusion (MI) problems of finding a zero of the sum of two monotone operators, in which one operator is maximal monotone, whereas the other is locally Lipschitz continuous. We propose primal-dual (PD) extrapolation methods to solve them using a point and operator extrapolation technique, whose parameters are chosen by a backtracking line search scheme. The proposed methods enjoy an operation complexity of [Formula: see text] and [Formula: see text], measured by the number of fundamental operations consisting only of evaluations of one operator and resolvent of the other operator, for finding an ε-residual solution of strongly and nonstrongly MI problems, respectively. The latter complexity significantly improves the previously best operation complexity [Formula: see text]. As a byproduct, complexity results of the primal-dual extrapolation methods are also obtained for finding an ε-KKT or ε-residual solution of convex conic optimization, conic constrained saddle point, and variational inequality problems under local Lipschitz continuity. We provide preliminary numerical results to demonstrate the performance of the proposed methods. Funding: This work was partially supported by the National Science Foundation [Grant IIS-2211491], the Office of Naval Research [Grant N00014-24-1-2702], and the Air Force Office of Scientific Research [Grant FA9550-24-1-0343].  more » « less
Award ID(s):
2211491
PAR ID:
10631902
Author(s) / Creator(s):
;
Publisher / Repository:
INFORMS
Date Published:
Journal Name:
Mathematics of Operations Research
ISSN:
0364-765X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we propose a new algorithm for solving convex-concave saddle-point problems using regret minimization in the repeated game framework. To do so, we introduce the Conic Blackwell Algorithm + ([Formula: see text]), a new parameter- and scale-free regret minimizer for general convex compact sets. [Formula: see text] is based on Blackwell approachability and attains [Formula: see text] regret. We show how to efficiently instantiate [Formula: see text] for many decision sets of interest, including the simplex, [Formula: see text] norm balls, and ellipsoidal confidence regions in the simplex. Based on [Formula: see text], we introduce [Formula: see text], a new parameter-free algorithm for solving convex-concave saddle-point problems achieving a [Formula: see text] ergodic convergence rate. In our simulations, we demonstrate the wide applicability of [Formula: see text] on several standard saddle-point problems from the optimization and operations research literature, including matrix games, extensive-form games, distributionally robust logistic regression, and Markov decision processes. In each setting, [Formula: see text] achieves state-of-the-art numerical performance and outperforms classical methods, without the need for any choice of step sizes or other algorithmic parameters. Funding: J. Grand-Clément is supported by the Agence Nationale de la Recherche [Grant 11-LABX-0047] and by Hi! Paris. C. Kroer is supported by the Office of Naval Research [Grant N00014-22-1-2530] and by the National Science Foundation [Grant IIS-2147361]. 
    more » « less
  2. In this paper, we study the generalized subdifferentials and the Riemannian gradient subconsistency that are the basis for non-Lipschitz optimization on embedded submanifolds of [Formula: see text]. We then propose a Riemannian smoothing steepest descent method for non-Lipschitz optimization on complete embedded submanifolds of [Formula: see text]. We prove that any accumulation point of the sequence generated by the Riemannian smoothing steepest descent method is a stationary point associated with the smoothing function employed in the method, which is necessary for the local optimality of the original non-Lipschitz problem. We also prove that any accumulation point of the sequence generated by our method that satisfies the Riemannian gradient subconsistency is a limiting stationary point of the original non-Lipschitz problem. Numerical experiments are conducted to demonstrate the advantages of Riemannian [Formula: see text] [Formula: see text] optimization over Riemannian [Formula: see text] optimization for finding sparse solutions and the effectiveness of the proposed method. Funding: C. Zhang was supported in part by the National Natural Science Foundation of China [Grant 12171027] and the Natural Science Foundation of Beijing [Grant 1202021]. X. Chen was supported in part by the Hong Kong Research Council [Grant PolyU15300219]. S. Ma was supported in part by the National Science Foundation [Grants DMS-2243650 and CCF-2308597], the UC Davis Center for Data Science and Artificial Intelligence Research Innovative Data Science Seed Funding Program, and a startup fund from Rice University. 
    more » « less
  3. Spectral functions on Euclidean Jordan algebras arise frequently in convex optimization models. Despite the success of primal-dual conic interior point solvers, there has been little work on enabling direct support for spectral cones, that is, proper nonsymmetric cones defined from epigraphs and perspectives of spectral functions. We propose simple logarithmically homogeneous barriers for spectral cones and we derive efficient, numerically stable procedures for evaluating barrier oracles such as inverse Hessian operators. For two useful classes of spectral cones—the root-determinant cones and the matrix monotone derivative cones—we show that the barriers are self-concordant, with nearly optimal parameters. We implement these cones and oracles in our open-source solver Hypatia, and we write simple, natural formulations for four applied problems. Our computational benchmarks demonstrate that Hypatia often solves the natural formulations more efficiently than advanced solvers such as MOSEK 9 solve equivalent extended formulations written using only the cones these solvers support. Funding: This work was supported by Office of Naval Research [Grant N00014-18-1-2079] and the National Science Foundation [Grant OAC-1835443]. 
    more » « less
  4. Globerson, A; Mackey, L; Belgrave, D; Fan, A; Paquet, U; Tomczak, J; Zhang, C (Ed.)
    Augmented Lagrangian Methods (ALMs) are widely employed in solving constrained optimizations, and some efficient solvers are developed based on this framework. Under the quadratic growth assumption, it is known that the dual iterates and the Karush–Kuhn–Tucker (KKT) residuals of ALMs applied to conic programs converge linearly. In contrast, the convergence rate of the primal iterates has remained elusive. In this paper, we resolve this challenge by establishing new quadratic growth and error bound properties for primal and dual conic programs under the standard strict complementarity condition. Our main results reveal that both primal and dual iterates of the ALMs converge linearly contingent solely upon the assumption of strict complementarity and a bounded solution set. This finding provides a positive answer to an open question regarding the asymptotically linear convergence of the primal iterates of ALMs applied to conic optimization. 
    more » « less
  5. We present alfonso, an open-source Matlab package for solving conic optimization problems over nonsymmetric convex cones. The implementation is based on the authors’ corrected analysis of a method of Skajaa and Ye. It enables optimization over any convex cone as long as a logarithmically homogeneous self-concordant barrier is available for the cone or its dual. This includes many nonsymmetric cones, for example, hyperbolicity cones and their duals (such as sum-of-squares cones), semidefinite and second-order cone representable cones, power cones, and the exponential cone. Besides enabling the solution of problems that cannot be cast as optimization problems over a symmetric cone, algorithms for nonsymmetric conic optimization also offer performance advantages for problems whose symmetric cone programming representation requires a large number of auxiliary variables or has a special structure that can be exploited in the barrier computation. The worst-case iteration complexity of alfonso is the best known for nonsymmetric cone optimization: [Formula: see text] iterations to reach an ε-optimal solution, where ν is the barrier parameter of the barrier function used in the optimization. Alfonso can be interfaced with a Matlab function (supplied by the user) that computes the Hessian of a barrier function for the cone. A simplified interface is also available to optimize over the direct product of cones for which a barrier function has already been built into the software. This interface can be easily extended to include new cones. Both interfaces are illustrated by solving linear programs. The oracle interface and the efficiency of alfonso are also demonstrated using an optimal design of experiments problem in which the tailored barrier computation greatly decreases the solution time compared with using state-of-the-art, off-the-shelf conic optimization software. Summary of Contribution: The paper describes an open-source Matlab package for optimization over nonsymmetric cones. A particularly important feature of this software is that, unlike other conic optimization software, it enables optimization over any convex cone as long as a suitable barrier function is available for the cone or its dual, not limiting the user to a small number of specific cones. Nonsymmetric cones for which such barriers are already known include, for example, hyperbolicity cones and their duals (such as sum-of-squares cones), semidefinite and second-order cone representable cones, power cones, and the exponential cone. Thus, the scope of this software is far larger than most current conic optimization software. This does not come at the price of efficiency, as the worst-case iteration complexity of our algorithm matches the iteration complexity of the most successful interior-point methods for symmetric cones. Besides enabling the solution of problems that cannot be cast as optimization problems over a symmetric cone, our software can also offer performance advantages for problems whose symmetric cone programming representation requires a large number of auxiliary variables or has a special structure that can be exploited in the barrier computation. This is also demonstrated in this paper via an example in which our code significantly outperforms Mosek 9 and SCS 2. 
    more » « less