skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Learning Optimal Tax Design in Nonatomic Congestion Games
In multiplayer games, self-interested behavior among the players can harm the social welfare. Tax mechanisms are a common method to alleviate this issue and induce socially optimal behavior. In this work, we take the initial step of learning the optimal tax that can maximize social welfare with limited feedback in congestion games. We propose a new type of feedback named equilibrium feedback, where the tax designer can only observe the Nash equilibrium after deploying a tax plan. Existing algorithms are not applicable due to the exponentially large tax function space, nonexistence of the gradient, and nonconvexity of the objective. To tackle these challenges, we design a computationally efficient algorithm that leverages several novel components: (1) a piece-wise linear tax to approximate the optimal tax; (2) extra linear terms to guarantee a strongly convex potential function; (3) an efficient subroutine to find the exploratory tax that can provide critical information about the game. The algorithm can find an \eps-optimal tax with O(\beta F^2/eps^2) sample complexity, where \beta is the smoothness of the cost function and F is the number of facilities.  more » « less
Award ID(s):
2023166 2212261 2312775
PAR ID:
10632232
Author(s) / Creator(s):
; ;
Publisher / Repository:
Advances in Neural Information Processing Systems
Date Published:
Volume:
37
ISBN:
9798331314385
Format(s):
Medium: X
Location:
Vancouver, Canada
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider information design in spatial resource competition, motivated by ride sharing platforms sharing information with drivers about rider demand. Each of N co-located agents (drivers) decides whether to move to another location with an uncertain and possibly higher resource level (rider demand), where the utility for moving increases in the resource level and decreases in the number of other agents that move. A principal who can observe the resource level wishes to share this information in a way that ensures a welfare-maximizing number of agents move. Analyzing the principal’s information design problem using the Bayesian persuasion framework, we study both private signaling mechanisms, where the principal sends personalized signals to each agent, and public signaling mechanisms, where the principal sends the same information to all agents. We show: 1) For private signaling, computing the optimal mechanism using the standard approach leads to a linear program with 2 N variables, rendering the computation challenging. We instead describe a computationally efficient two-step approach to finding the optimal private signaling mechanism. First, we perform a change of variables to solve a linear program with O(N^2) variables that provides the marginal probabilities of recommending each agent move. Second, we describe an efficient sampling procedure over sets of agents consistent with these optimal marginal probabilities; the optimal private mechanism then asks the sampled set of agents to move and the rest to stay. 2) For public signaling, we first show the welfare-maximizing equilibrium given any common belief has a threshold structure. Using this, we show that the optimal public mechanism with respect to the sender-preferred equilibrium can be computed in polynomial time. 3) We support our analytical results with numerical computations that show the optimal private and public signaling mechanisms achieve substantially higher social welfare when compared with no-information and full-information benchmarks. 
    more » « less
  2. The densest subgraph problem in a graph (\dsg), in the simplest form, is the following. Given an undirected graph $G=(V,E)$ find a subset $$S \subseteq V$$ of vertices that maximizes the ratio $|E(S)|/|S|$ where $E(S)$ is the set of edges with both endpoints in $$S$$. \dsg and several of its variants are well-studied in theory and practice and have many applications in data mining and network analysis. In this paper we study fast algorithms and structural aspects of \dsg via the lens of \emph{supermodularity}. For this we consider the densest supermodular subset problem (\dssp): given a non-negative supermodular function $$f: 2^V \rightarrow \mathbb{R}_+$, maximize $f(S)/|S|$$. For \dsg we describe a simple flow-based algorithm that outputs a $$(1-\eps)$-approximation in deterministic $$\tilde{O}(m/\eps)$$ time where $$m$$ is the number of edges. Our algorithm is the first to have a near-linear dependence on $$m$$ and $$1/\eps$$ and improves previous methods based on an LP relaxation. It generalizes to hypergraphs, and also yields a faster algorithm for directed \dsg. Greedy peeling algorithms have been very popular for \dsg and several variants due to their efficiency, empirical performance, and worst-case approximation guarantees. We describe a simple peeling algorithm for \dssp and analyze its approximation guarantee in a fashion that unifies several existing results. Boob et al.\ \cite{bgpstww-20} developed an \emph{iterative} peeling algorithm for \dsg which appears to work very well in practice, and made a conjecture about its convergence to optimality. We affirmatively answer their conjecture, and in fact prove that a natural generalization of their algorithm converges to a $$(1-\eps)$$-approximation for \emph{any} supermodular function $$f$$; the key to our proof is to consider an LP formulation that is derived via the \Lovasz extension of a supermodular function. For \dsg the bound on the number of iterations we prove is $$O(\frac{\Delta \ln |V|}{\lambda^*}\cdot \frac{1}{\eps^2})$ where $$\Delta$$ is the maximum degree and $$\lambda^*$$ is the optimum value. Our work suggests that iterative peeling can be an effective heuristic for several objectives considered in the literature. Finally, we show that the $$2$$-approximation for densest-at-least-$$k$$ subgraph \cite{ks-09} extends to the supermodular setting. We also give a unified analysis of the peeling algorithm for this problem, and via this analysis derive an approximation guarantee for a generalization of \dssp to maximize $$f(S)/g(|S|)$ for a concave function $$g$$. 
    more » « less
  3. We develop provably efficient reinforcement learning algorithms for two-player zero-sum finite-horizon Markov games with simultaneous moves. To incorporate function approximation, we consider a family of Markov games where the reward function and transition kernel possess a linear structure. Both the offline and online settings of the problems are considered. In the offline setting, we control both players and aim to find the Nash equilibrium by minimizing the duality gap. In the online setting, we control a single player playing against an arbitrary opponent and aim to minimize the regret. For both settings, we propose an optimistic variant of the least-squares minimax value iteration algorithm. We show that our algorithm is computationally efficient and provably achieves an [Formula: see text] upper bound on the duality gap and regret, where d is the linear dimension, H the horizon and T the total number of timesteps. Our results do not require additional assumptions on the sampling model. Our setting requires overcoming several new challenges that are absent in Markov decision processes or turn-based Markov games. In particular, to achieve optimism with simultaneous moves, we construct both upper and lower confidence bounds of the value function, and then compute the optimistic policy by solving a general-sum matrix game with these bounds as the payoff matrices. As finding the Nash equilibrium of a general-sum game is computationally hard, our algorithm instead solves for a coarse correlated equilibrium (CCE), which can be obtained efficiently. To our best knowledge, such a CCE-based scheme for optimism has not appeared in the literature and might be of interest in its own right. 
    more » « less
  4. In multi-agent dynamic games, the Nash equilibrium state trajectory of each agent is determined by its cost function and the information pattern of the game. However, the cost and trajectory of each agent may be unavailable to the other agents. Prior work on using partial observations to infer the costs in dynamic games assumes an open-loop information pattern. In this work, we demonstrate that the feedback Nash equilibrium concept is more expressive and encodes more complex behavior. It is desirable to develop specific tools for inferring players’ objectives in feedback games. Therefore, we consider the dynamic game cost inference problem under the feedback information pattern, using only partial state observations and incomplete trajectory data. To this end, we first propose an inverse feedback game loss function, whose minimizer yields a feedback Nash equilibrium state trajectory closest to the observa- tion data. We characterize the landscape and differentiability of the loss function. Given the difficulty of obtaining the exact gradient, our main contribution is an efficient gradient approximator, which enables a novel inverse feedback game solver that minimizes the loss using first-order optimization. In thorough empirical evaluations, we demonstrate that our algorithm converges reliably and has better robustness and generalization performance than the open-loop baseline method when the observation data reflects a group of players acting in a feedback Nash game. 
    more » « less
  5. We study security threats to Markov games due to information asymmetry and misinformation. We consider an attacker player who can spread misinformation about its reward function to influence the robust victim player's behavior. Given a fixed fake reward function, we derive the victim's policy under worst-case rationality and present polynomial-time algorithms to compute the attacker's optimal worst-case policy based on linear programming and backward induction. Then, we provide an efficient inception (""planting an idea in someone's mind"") attack algorithm to find the optimal fake reward function within a restricted set of reward functions with dominant strategies. Importantly, our methods exploit the universal assumption of rationality to compute attacks efficiently. Thus, our work exposes a security vulnerability arising from standard game assumptions under misinformation. 
    more » « less