skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2312775

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In multiplayer games, self-interested behavior among the players can harm the social welfare. Tax mechanisms are a common method to alleviate this issue and induce socially optimal behavior. In this work, we take the initial step of learning the optimal tax that can maximize social welfare with limited feedback in congestion games. We propose a new type of feedback named equilibrium feedback, where the tax designer can only observe the Nash equilibrium after deploying a tax plan. Existing algorithms are not applicable due to the exponentially large tax function space, nonexistence of the gradient, and nonconvexity of the objective. To tackle these challenges, we design a computationally efficient algorithm that leverages several novel components: (1) a piece-wise linear tax to approximate the optimal tax; (2) extra linear terms to guarantee a strongly convex potential function; (3) an efficient subroutine to find the exploratory tax that can provide critical information about the game. The algorithm can find an \eps-optimal tax with O(\beta F^2/eps^2) sample complexity, where \beta is the smoothness of the cost function and F is the number of facilities. 
    more » « less
  2. Globerson, A; Mackey, L; Belgrave, D; Fan, A; Paquet, U; Tomczak, J; Zhang, C (Ed.)
    This paper investigates ML systems serving a group of users, with multiple models/services, each aimed at specializing to a sub-group of users. We consider settings where upon deploying a set of services, users choose the one minimizing their personal losses and the learner iteratively learns by interacting with diverse users. Prior research shows that the outcomes of learning dynamics, which comprise both the services' adjustments and users' service selections, hinge significantly on the initial conditions. However, finding good initial conditions faces two main challenges:(i)\emph {Bandit feedback:} Typically, data on user preferences are not available before deploying services and observing user behavior;(ii)\emph {Suboptimal local solutions:} The total loss landscape (ie, the sum of loss functions across all users and services) is not convex and gradient-based algorithms can get stuck in poor local minima. We address these challenges with a randomized algorithm to adaptively select a minimal set of users for data collection in order to initialize a set of services. Under mild assumptions on the loss functions, we prove that our initialization leads to a total loss within a factor of the\textit {globally optimal total loss, with complete user preference data}, and this factor scales logarithmically in the number of services. This result is a generalization of the well-known k-means++ guarantee to a broad problem class which is also of independent interest. The theory is complemented by experiments on real as well as semi-synthetic datasets. 
    more » « less
  3. Numerous online services are data-driven: the behavior of users affects the system’s parameters, and the system’s parameters affect the users’ experience of the service, which in turn affects the way users may interact with the system. For example, people may choose to use a service only for tasks that already works well, or they may choose to switch to a different service. These adaptations influence the ability of a system to learn about a population of users and tasks in order to improve its performance broadly. In this work, we analyze a class of such dynamics—where users allocate their participation amongst services to reduce the individual risk they experience, and services update their model parameters to reduce the service’s risk on their current user population. We refer to these dynamics as risk-reducing, which cover a broad class of common model updates including gradient descent and multiplicative weights. For this general class of dynamics, we show that asymptotically stable equilibria are always segmented, with sub-populations allocated to a single learner. Under mild assumptions, the utilitarian social optimum is a stable equilibrium. In contrast to previous work, which shows that repeated risk minimization can result in representation disparity and high overall loss with a single learner (Hashimoto et al., 2018; Miller et al., 2021), we find that repeated myopic updates with multiple learners lead to better outcomes. We illustrate the phenomena via a simulated example initialized from real data. 
    more » « less
  4. Leading approaches to algorithmic fairness and policy-induced distribution shift are often misaligned with long-term objectives in sequential settings. We aim to correct these shortcomings by ensuring that both the objective and fairness constraints account for policy-induced distribution shift. First, we motivate this problem using an example in which individuals subject to algorithmic predictions modulate their willingness to participate with the policy maker. Fairness in this example is measured by the variance of group participation rates. Next, we develop a method for solving the resulting constrained, non-linear optimization problem and prove that this method converges to a fair, locally optimal policy given first-order information. Finally, we experimentally validate our claims in a semi-synthetic setting. 
    more » « less
  5. We study a generalization of the online binary prediction with expert advice framework where at each round, the learner is allowed to pick m   1 experts from a pool of K experts and the overall utility is a modular or submodular function of the chosen experts. We focus on the setting in which experts act strategically and aim to maximize their influence on the algorithm’s predictions by potentially misreporting their beliefs about the events. Among others, this setting finds applications in forecasting competitions where the learner seeks not only to make predictions by aggregating different forecasters but also to rank them according to their relative performance. Our goal is to design algorithms that satisfy the following two requirements: 1) Incentive-compatible: Incentivize the experts to report their beliefs truthfully, and 2) No-regret: Achieve sublinear regret with respect to the true beliefs of the best-fixed set of m experts in hindsight. Prior works have studied this framework when m = 1 and provided incentive-compatible no-regret algorithms for the problem. We first show that a simple reduction of our problem to the m = 1 setting is neither efficient nor effective. Then, we provide algorithms that utilize the specific structure of the utility functions to achieve the two desired goals. 
    more » « less