skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 30, 2026

Title: Single-Frame MIMO Radar Velocity Vector Estimation via Multi-Bounce Scattering
Radars are widely adopted for autonomous navigation and vehicular networking due to their robustness to weather conditions as compared to visible light cameras and lidars. However, radars currently struggle with differentiating static vs tangentially moving objects within a single radar frame since both yield the same Doppler along line-of-sight paths to the radar. Prior solutions deploy multiple radar or visible light camera modules to form a multi-“look” synthetic aperture for estimating the single-frame velocity vectors, to estimate tangential and radial velocity components of moving objects leading to higher system costs. In this paper, we propose to exploit multi-bounce scattering from secondary static objects in the environment, e.g., building pillars, walls, etc., to form an effective multi-“look” synthetic aperture for single-frame velocity vector estimation with a single multiple-input, multiple-output (MIMO) radar, thus reducing the overall system cost and removing the need for multi-module synchronization. We present a comprehensive theoretical and experiment evaluation of our scheme, demonstrating a 4.5× reduction in the error for estimating moving objects’ velocity vectors over comparable single-radar baselines.  more » « less
Award ID(s):
2215646 2215082
PAR ID:
10632629
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Transactions on Computational Imaging
Volume:
11
ISSN:
2573-0436
Page Range / eLocation ID:
1005 to 1019
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Multiple-input, multiple-output (MIMO) radars can estimate radial velocities of moving objects, but not their tangential velocities. In this paper, we propose to exploit multi-bounce scattering in the environment to form an effective multi-“look” synthetic aperture and enable estimation of a moving object's entire velocity vector - both tangential and radial velocities. The proposed approach enables instantaneous velocity vector estimation with a single MIMO radar, without additional sensors or assumptions about the object size. The only requirement of our approach is the existence of at least one resolvable multi-bounce path to the object from a static landmark in the environment. The approach is validated both in theory and simulation. 
    more » « less
  2. Multiple-input, multiple-output (MIMO) radars can estimate radial velocities of moving objects, but not their tangential velocities. In this paper, we propose to exploit multi-bounce scattering in the environment to form an effective multi-“look” synthetic aperture and enable estimation of a moving object's entire velocity vector - both tangential and radial velocities. The proposed approach enables instantaneous velocity vector estimation with a single MIMO radar, without additional sensors or assumptions about the object size. The only requirement of our approach is the existence of at least one resolvable multi-bounce path to the object from a static landmark in the environment. The approach is validated both in theory and simulation. 
    more » « less
  3. In this paper, we ask, "Can millimeter-wave (mmWave) radars sense objects not directly illuminated by the radar - for instance, objects located outside the transmit beamwidth, behind occlusions, or placed fully behind the radar?" Traditionally, mmWave radars are limited to sense objects that are directly illuminated by the radar and scatter its signals directly back. In practice, however, radar signals scatter to other intermediate objects in the environment and undergo multiple bounces before being received back at the radar. In this paper, we present Hydra, a framework to explicitly model and exploit multi-bounce paths for sensing. Hydra enables standalone mmWave radars to sense beyond-field-of-view objects without prior knowledge of the environment. We extensively evaluate the localization performance of Hydra with an off-the-shelf mmWave radar in five different environments with everyday objects. Exploiting multi-bounce via Hydra provides 2×-10× improvement in the median beyond-field-of-view localization error over baselines. 
    more » « less
  4. A number of algorithms have been developed to extract heart rate from physiological motion data using Doppler radar system. Yet, it is very challenging to eliminate noise associated with surroundings, especially with a single-channel Doppler radar system. However, single-channel Doppler radars provide the advantage of operating at lower power. Additionally, heart rate extraction using single-channel Doppler radar has remained somewhat unexplored. This has motivated the development of effective signal processing algorithms for signals received from single-channel Doppler radars. Three algorithms have been studied for estimating heart rate. The first algorithm is based on applying FFT on an FIR filtered signal. In the second algorithm, autocorrelation was performed on the filtered data. Thirdly, a peak finding algorithm was used in conjunction with a moving average preceded by a clipper to determine the heart rate. The results obtained were compared with heart rate readings from a pulse oximeter. With a mean difference of 2.6 bpm, the heart rate from Doppler radar matched that from the pulse oximeter most frequently when the peak finding algorithm was used. The results obtained using autocorrelation and peak finding algorithm (with standard deviations of 2.6 bpm and 4.0 bpm) suggest that a single channel Doppler radar system can be a viable alternative to contact heart rate monitors in patients for whom contact measurements are not feasible. 
    more » « less
  5. Abstract—Robotic geo-fencing and surveillance systems require accurate monitoring of objects if/when they violate perimeter restrictions. In this paper, we seek a solution for depth imaging of such objects of interest at high accuracy (few tens of cm) over extended ranges (up to 300 meters) from a single vantage point, such as a pole mounted platform. Unfortunately, the rich literature in depth imaging using camera, lidar and radar in isolation struggles to meet these tight requirements in real-world conditions. This paper proposes Metamoran, a solution that explores long-range depth imaging of objects of interest by fusing the strengths of two complementary technologies: mmWave radar and camera. Unlike cameras, mmWave radars offer excellent cm-scale depth resolution even at very long ranges. However, their angular resolution is at least 10× worse than camera systems. Fusing these two modalities is natural, but in scenes with high clutter and at long ranges, radar reflections are weak and experience spurious artifacts. Metamoran’s core contribution is to leverage image segmentation and monocular depth estimation on camera images to help declutter radar and discover true object reflections.We perform a detailed evaluation of Metamoran’s depth imaging capabilities in 400 diverse scenarios. Our evaluation shows that Metamoran estimates the depth of static objects up to 90 m away and moving objects up to 305 m away and with a median error of 28 cm, an improvement of 13× over a naive radar+camera baseline and 23× compared to monocular depth estimation. 
    more » « less