skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 14, 2026

Title: Molecularly informed field-theoretic models of confined fluids
Complex fluids in confined geometries are found in numerous applications, including membranes, lubricants, and microelectronics. However, current computational approaches for studying these systems have a variety of shortcomings. Particle-based simulations are limited in accessible length and time scales, while the interaction parameters in field-theoretic approaches have no direct connections to specific chemistries. Here, we extend a multiscale framework that we earlier developed for bulk systems to address these challenges in confined polymer formulations. The methodology uses atomistic molecular dynamics simulations to parameterize coarse-grained field-theoretic models of confined fluids, which subsequently enable fast equilibration and the ability to surmount length scales inaccessible to particle-based simulation methods. We first use this workflow to study a model system consisting of a confined Gaussian fluid to validate and determine best practices for the coarse-graining methodology. Next, we demonstrate this methodology by applying it to an alkyl acrylic diblock copolymer and dodecane solution confined between α-iron oxide surfaces and examining the effect of diblock concentration and length on the structure of the adsorbed film. This approach has the potential to expedite the study of complex fluids in confined environments, bridging atomistic detail and mesoscale modeling with broad implications for materials design.  more » « less
Award ID(s):
2104255
PAR ID:
10633256
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
163
Issue:
2
ISSN:
0021-9606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent developments in generalized continuum modeling methods ranging from coarse-grained atomistics to micromorphic theory offer potential to make more intimate physical contact with dislocation field problems framed at length scales on the order of microns. We explore a range of discrete dynamical and continuum mechanics approaches to crystal plasticity that are relevant to modeling behavior of populations of dislocations. Predictive atomistic and coarse-grained atomistic models are limited in terms of length and time scales that can be accessed; examples of the latter are discussed in terms of interactions of multiple dislocations in heterogeneous systems. Generalized continuum models alleviate restrictions to a significant extent in modeling larger scales of dislocation configurations and reactions, and are useful to consider effects of dislocation configuration on strength at characteristic length scales of sub-micron and above; these models require a combination of bottomup models and top-down experimental information to inform parameters and model form. The concurrent atomistic-continuum (CAC) method is extended to model complex multicomponent alloy systems using an average atom approach. Examples of CAC are presented, along with potential to assist in informing parameters of a recently developed micropolar crystal plasticity model based on a set of sub-micron dislocation field problems. Prospects for further developments are discussed. 
    more » « less
  2. Field-theoretic simulations are numerical methods for polymer field theory, which include fluctuation corrections beyond the mean-field level, successfully capturing various mesoscopic phenomena. Most field-theoretic simulations of polymeric fluids use the auxiliary field (AF) theory framework, which employs Hubbard–Stratonovich transformations for the particle-to-field conversion. Nonetheless, the Hubbard–Stratonovich transformation imposes significant limitations on the functional form of the non-bonded potentials. Removing this restriction on the non-bonded potentials will enable studies of a wide range of systems that require multi-body or more complex potentials. An alternative representation is the hybrid density-explicit auxiliary field theory (DE-AF), which retains both a density field and a conjugate auxiliary field for each species. While the DE-AF representation is not new, density-explicit field-theoretic simulations have yet to be developed. A major challenge is preserving the real and non-negative nature of the density field during stochastic evolution. To address this, we introduce positivity-preserving schemes that enable the first stable and efficient density-explicit field-theoretic simulations (DE-AF FTS). By applying the new method to a simple fluid, we find thermodynamically correct results at high densities, but the algorithm fails in the dilute regime. Nonetheless, DE-AF FTS is shown to be broadly applicable to dense fluid systems including a simple fluid with a three-body non-bonded potential, a homopolymer solution, and a diblock copolymer melt. 
    more » « less
  3. The critical micelle concentration (CMC) is a crucial parameter in understanding the self-assembly behavior of surfactants. In this study, we combine simulation and experiment to demonstrate the predictive capability of molecularly informed field theories in estimating the CMC of biologically based protein surfactants. Our simulation approach combines the relative entropy coarse-graining of small-scale atomistic simulations with large-scale field-theoretic simulations, allowing us to efficiently compute the free energy of micelle formation necessary for the CMC calculation while preserving chemistry-specific information about the underlying surfactant building blocks. We apply this methodology to a unique intrinsically disordered protein platform capable of a wide variety of tailored sequences that enable tunable micelle self-assembly. The computational predictions of the CMC closely match experimental measurements, demonstrating the potential of molecularly informed field theories as a valuable tool to investigate self-assembly in bio-based macromolecules systematically. 
    more » « less
  4. The successful recent application of machine learning methods to scientific problems includes the learning of flexible and accurate atomic-level force-fields for materials and biomolecules from quantum chemical data. In parallel, the machine learning of force-fields at coarser resolutions is rapidly gaining relevance as an efficient way to represent the higherbody interactions needed in coarse-grained force-fields to compensate for the omitted degrees of freedom. Coarsegrained models are important for the study of systems at time and length scales exceeding those of atomistic simulations. However, the development of transferable coarse-grained models via machine learning still presents significant challenges. Here, we discuss recent developments in this field and current efforts to address the remaining challenges. 
    more » « less
  5. Understanding the relationship between multiscale morphology and electronic structure is a grand challenge for semiconducting soft materials. Computational studies aimed at characterizing these multiscale relationships require the complex integration of quantum-chemical (QC) calculations, all-atom and coarse-grained (CG) molecular dynamics simulations, and back-mapping approaches. However, the integration and scalability of these methods pose substantial computational challenges that limit their application to the requisite length scales of soft material morphologies. Here, we demonstrate the bottom-up electronic coarse-graining (ECG) of morphology-dependent electronic structure in the liquid-crystal-forming semiconductor, 2-(4-methoxyphenyl)-7-octyl-benzothienobenzothiophene (BTBT). ECG is applied to construct density functional theory (DFT)-accurate valence band Hamiltonians of the isotropic and smectic liquid crystal (LC) phases using only the CG representation of BTBT. By bypassing the atomistic resolution and its prohibitive computational costs, ECG enables the first calculations of the morphology dependence of the electronic structure of charge carriers across LC phases at the ~20 nm length scale, with robust statistical sampling. kinetic Monte Carlo (kMC) simulations reveal a strong morphology dependence on zero-field charge mobility among different LC phases as well as the presence of two-molecule charge carriers that act as traps and hinder charge transport. We leverage these results to further evaluate the feasibility of developing truly mesoscopic, field-based ECG models in future works. The fully CG approach to electronic property predictions in LC semiconductors opens a new computational direction for designing electronic processes in soft materials at their characteristic length scales. 
    more » « less