If a boundary between two static media is moving with a constant superluminal velocity, or there is a sudden change of the refractive index with time, this yields generation of entangled pairs of photons out of vacuum propagating in the opposite directions. Here we show that during this process, entanglement of Minkowski vacuum is transferred to the entanglement of the generated photon pairs. If initially an electromagnetic pulse is present in the medium the photon generation is stimulated into the pulse mode, and since photons are created as entangled pairs the counter-propagating photon partners produce a pulse moving in the opposite direction, which is known as time reflection. Thus, time reflection occurs due to stimulated generation of the entangled photon pairs out of entangled vacuum and no photons in the original pulse are in fact being reflected. This is different from the mechanism of light reflection from spatial inhomogeneities for which no photons are generated.
more »
« less
This content will become publicly available on February 1, 2026
Minkowski vacuum entanglement and accelerated oscillator chains
Minkowski vacuum is empty from the perspective of Unruh-Minkowski photons, however, in the Rindler picture, it is filled with entangled pairs of Rindler photons. A ground-state atom uniformly accelerated through Minkowski vacuum can become excited by absorbing a Rindler photon (Unruh effect) or, in the alternative description, by emitting an Unruh-Minkowski photon (Unruh-Wald effect). We find an exact solution for the quantum evolution of a long chain of harmonic oscillators accelerated through Minkowski vacuum and for two chains accelerated in the opposite directions. We show how entanglement of Rindler photons present in Minkowski vacuum is transferred to the oscillators moving in causally disconnected regions. We also show that in the Unruh-Minkowski photon picture the process can be interpreted as if initial correlations between collective oscillator modes are transferred to the generated Unruh-Minkowski photons.
more »
« less
- Award ID(s):
- 2013771
- PAR ID:
- 10633269
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review D
- Volume:
- 111
- Issue:
- 4
- ISSN:
- 2470-0010
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
It was previously shown that if an experimenter, Alice, puts a massive or charged body in a quantum spatial superposition, then the presence of a black hole (or more generally any Killing horizon) will eventually decohere the superposition. This decoherence was identified as resulting from the radiation of soft photons/gravitons through the horizon, thus suggesting that the global structure of the spacetime is essential for describing the decoherence. In this paper, we show that the decoherence can alternatively be described in terms of the local two-point function of the quantum field within Alice’s lab, without any direct reference to the horizon. From this point of view, the decoherence of Alice’s superposition in the presence of a black hole arises from the extremely low frequency Hawking quanta present in Alice’s lab. We explicitly calculate the decoherence occurring in Schwarzschild spacetime in the Unruh vacuum from the local viewpoint. We then use this viewpoint to elucidate (i) the differences in decoherence effects that would occur in Schwarzschild spacetime in the Boulware and Hartle-Hawking vacua; (ii) the difference in decoherence effects that would occur in Minkowski spacetime filled with a thermal bath as compared with Schwarzschild spacetime; (iii) the lack of decoherence in the spacetime of a static star even though the vacuum state outside the star is similar in many respects to the Boulware vacuum around a black hole; and (iv) the requirements on the degrees of freedom of a material body needed to produce a decoherence effect that mimics that of a black hole. Published by the American Physical Society2025more » « less
-
Abstract An accelerating photodetector is predicted to see photons in the electromagnetic vacuum. However, the extreme accelerations required have prevented the direct experimental verification of this quantum vacuum effect. In this work, we consider many accelerating photodetectors that are contained within an electromagnetic cavity. We show that the resulting photon production from the cavity vacuum can be collectively enhanced such as to be measurable. The combined cavity-photodetectors system maps onto a parametrically driven Dicke-type model; when the detector number exceeds a certain critical value, the vacuum photon production undergoes a phase transition from a normal phase to an enhanced superradiant-like, inverted lasing phase. Such a model may be realized as a mechanical membrane with a dense concentration of optically active defects undergoing gigahertz flexural motion within a superconducting microwave cavity. We provide estimates suggesting that recent related experimental devices are close to demonstrating this inverted, vacuum photon lasing phase.more » « less
-
A bstract The detection of massless kinetically-mixed dark photons is notoriously difficult, as the effect of this mixing can be removed by a field redefinition in vacuum. In this work, we study the prospect of detecting massless dark photons in the presence of a cosmic relic directly charged under this dark electromagnetism. Such millicharged particles, in the form of dark matter or dark radiation, generate an effective dark photon mass that drives photon-to-dark photon oscillations in the early universe. We also study the prospect for such models to alleviate existing cosmological constraints on massive dark photons, enlarging the motivation for direct tests of this parameter space using precision terrestrial probes.more » « less
-
Yamanouchi, K; DiMauro, L F; Hill_III, W T (Ed.)Photon-photon collisions, as one of the fundamental processes in quantum physics, have attracted a lot of attention. However, most effort has been focused on photons energetic enough to create particle-antiparticle pairs. The low energy limit—e.g., optical photons—has attracted less attention because of their extremely low collision cross section. By optical photons we mean UV, visible and infrared, although the cutting edge of extreme lasers is in the near infrared. The Schwinger critical field for pair generation seems not possible, at least directly, with the current laser technology. This often is considered as a problem, but we view this as an asset; the near impossibility of pair production via photon-photon scattering in the infrared is a perfect scenario to study virtual pairs that characterize Dirac’s quantum vacuum. Moreover, it is remarkable that this scenario of photon-photon collisions was already studied in the 1930s by two of the fathers of Quantum Mechanics, among others, at the dawn of this theory. In their respective papers, however, Born and Heisenberg arrived to different conclusions regarding the birefringence of vacuum. This controversy is still an open question that will be solved soon, we hope, with upcoming experiments. Here, we discuss a possible photon-photon collision experiment with extreme lasers, and will show that it can provide measurable effects, allowing fundamental information about the essence of Quantum Electrodynamics and its Lagrangian to be extracted. A possible experimental scenario with two ultra-intense pulses for detecting photon-photon scattering is analyzed. This would need a high-precision measurement, with control of temporal and spatial jitter, and noise. We conclude that such an experiment is barely feasible at $$10^{23}$$ W/cm$^2$ (today’s intensity record) and very promising at 1$$0^{24}$$ W/cm$^2$.more » « less
An official website of the United States government
