Abstract BackgroundMeiosis is a specialized cell division that underpins sexual reproduction in most eukaryotes. During meiosis, interhomolog meiotic recombination facilitates accurate chromosome segregation and generates genetic diversity by shuffling parental alleles in the gametes. The frequency of meiotic recombination inArabidopsishas a U-shaped curve in response to environmental temperature, and is dependent on the Type I, crossover (CO) interference-sensitive pathway. The mechanisms that modulate recombination frequency in response to temperature are not yet known. ResultsIn this study, we compare the transcriptomes of thermally-stressed meiotic-stage anthers frommsh4andmus81mutants that mediate the Type I and Type II meiotic recombination pathways, respectively. We show that heat stress reduces the number of expressed genes regardless of genotype. In addition,msh4mutants have a distinct gene expression pattern compared tomus81and wild type controls. Interestingly,ASY1,which encodes a HORMA domain protein that is a component of meiotic chromosome axes, is up-regulated in wild type andmus81but not inmsh4. In addition,SDSthe meiosis-specific cyclin-like gene,DMC1the meiosis-specific recombinase,SYN1/REC8the meiosis-specific cohesion complex component, andSWI1which functions in meiotic sister chromatid cohesion are up-regulated in all three genotypes. We also characterize 51 novel, previously unannotated transcripts, and show that their promoter regions are associated with A-rich meiotic recombination hotspot motifs. ConclusionsOur transcriptomic analysis ofmsh4andmus81mutants enhances our understanding of how the Type I and Type II meiotic CO pathway respond to environmental temperature stress and might provide a strategy to manipulate recombination levels in plants.
more »
« less
The B-type cyclin Clb4 prevents meiosis I sister centromere separation in budding yeast
Abstract In meiosis, one round of DNA replication followed by two rounds of chromosome segregation halves the ploidy of the original cell. Accurate chromosome segregation in meiosis I depends on recombination between homologous chromosomes. Sister centromeres attach to the same spindle pole in this division and only segregate in meiosis II. We used budding yeast to select for mutations that produced viable spores in the absence of recombination. The most frequent mutations inactivated CLB4, which encodes one of four B-type cyclins. In two wild yeast isolates, Y55 and SK1, but not the W303 laboratory strain, deleting CLB4 causes premature sister centromere separation and segregation in meiosis I and frequent termination of meiosis after a single division, demonstrating a novel role for Clb4 in meiotic chromosome dynamics and meiotic progression. This role depends on the genetic background since meiosis in W303 is largely independent of CLB4.
more »
« less
- Award ID(s):
- 2319006
- PAR ID:
- 10633746
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- G3: Genes, Genomes, Genetics
- Volume:
- 15
- Issue:
- 9
- ISSN:
- 2160-1836
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Salz, H (Ed.)Abstract Meiosis is usually described as 4 essential and sequential processes: (1) homolog pairing; (2) synapsis, mediated by the synaptonemal complex; (3) crossing over; and (4) segregation. In this canonical model, the maturation of crossovers into chiasmata plays a vital role in holding homologs together and ensuring their segregation at the first meiotic division. However, Lepidoptera (moths and butterflies) undergo 3 distinct meiotic processes, only one of which is canonical. Lepidoptera males utilize 2 meiotic processes: canonical meiosis that produces nucleated fertile sperm, and a noncanonical meiosis that produces anucleated nonfertile sperm which are nonetheless essential for reproduction. Lepidoptera females, which carry heteromorphic sex chromosomes, undergo a completely achiasmate (lacking crossovers) meiosis, thereby requiring an alternative mechanism to ensure proper homolog segregation. Here, we report that the development of a molecular cell biology toolkit designed to properly analyze features of meiosis, including the synaptonemal complex structure and function, in the silkworm Bombyx mori. In addition to standard homology searches to identify Bombyx orthologs of known synaptonemal complex encoding genes, we developed an ortholog discovery app (Shinyapp) to identify Bombyx orthologs of proteins involved in several meiotic processes. We used this information to clone genes expressed in the testes and then created antibodies against their protein products. We used the antibodies to confirm the localization of these proteins in normal male spermatocytes, as well as using in vitro assays to confirm orthologous interactions. The development of this toolkit will facilitate further study of the unique meiotic processes that characterize meiosis in Lepidoptera.more » « less
-
null (Ed.)Abstract Centromeres are epigenetically determined nuclear domains strictly required for chromosome segregation and genome stability. However, the mechanisms regulating centromere and kinetochore chromatin modifications are not known. Here, we demonstrate that LSH is enriched at meiotic kinetochores and its targeted deletion induces centromere instability and abnormal chromosome segregation. Superresolution chromatin analysis resolves LSH at the inner centromere and kinetochores during oocyte meiosis. LSH knockout pachytene oocytes exhibit reduced HDAC2 and DNMT-1. Notably, mutant oocytes show a striking increase in histone H3 phosphorylation at threonine 3 (H3T3ph) and accumulation of major satellite transcripts in both prophase-I and metaphase-I chromosomes. Moreover, knockout oocytes exhibit centromere fusions, ectopic kinetochore formation and abnormal exchange of chromatin fibers between paired bivalents and asynapsed chromosomes. Our results indicate that loss of LSH affects the levels and chromosomal localization of H3T3ph and provide evidence that, by maintaining transcriptionally repressive heterochromatin, LSH may be essential to prevent deleterious meiotic recombination events at repetitive centromeric sequences.more » « less
-
Jaramillo-Lambert, Aimee (Ed.)Meiotic recombination plays an important role in ensuring proper chromosome segregation during meiosis I through the creation of chiasmata that connect homologous chromosomes. Recombination plays an additional role in evolution by creating new allelic combinations. Organisms display species-specific crossover patterns, but how these patterns are established is poorly understood.Drosophila mauritianadisplays a different meiotic recombination pattern compared toDrosophila melanogaster, withD. mauritianaexperiencing a reduced centromere effect, the suppression of recombination emanating from the centromeres. To evaluate the contribution of the synaptonemal complex (SC) C(3)G protein to these recombination rate differences, theD. melanogasterallele was replaced withD. mauritiana c(3)Gcoding sequence. We found that theD. mauritianaC(3)G could interact with theD. melanogasterSC machinery to build full length tripartite SC and chromosomes segregated accurately, indicating sufficient crossovers were generated. However, the placement of crossovers was altered, displaying an increase in frequency in the centromere-proximal euchromatin indicating a decrease in the centromere effect, similar to that observed inD. mauritianafemales. Recovery of chromatids with more than one crossover was also increased, likely due to the larger chromosome span now available for crossovers. As replacement of a single gene mediated a strong shift of one species’ crossover pattern towards another species, it indicates a small number of discrete factors may have major influence on species-specific crossover patterning. Additionally, it demonstrates the SC, a structure known to be required for crossover formation in many species, is likely one of these discrete factors.more » « less
-
In vascular plants, heterosporous lineages typically have fewer chromosomes than homosporous lineages. The underlying mechanism causing this disparity has been debated for over half a century. Although reproductive mode has been identified as critical to these patterns, the symmetry of meiosis during sporogenesis has been overlooked as a potential cause of the difference in chromosome numbers. In most heterosporous plants, meiosis during megasporogenesis is asymmetric, meaning one of the four meiotic products survives to become the egg. Comparatively, meiosis is symmetric in homosporous megasporogenesis and all meiotic products survive. The symmetry of meiosis is important because asymmetric meiosis enables meiotic drive and associated genomic changes, while symmetric meiosis cannot lead to meiotic drive. Meiotic drive is a deviation from Mendelian inheritance where genetic elements are preferentially inherited by the surviving egg cell, and can profoundly impact chromosome (and genome) size, structure, and number. Here we review how meiotic drive impacts chromosome number evolution in heterosporous plants, how the lack of meiotic drive in homosporous plants impacts their genomes, and explore future approaches to understand the role of meiotic drive on chromosome number across land plants.more » « less
An official website of the United States government
