skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Transcriptional Regulatory Network Topology with Applications to Bio-inspired Networking: A Survey
The advent of the edge computing network paradigm places the computational and storage resources away from the data centers and closer to the edge of the network largely comprising the heterogeneous IoT devices collecting huge volumes of data. This paradigm has led to considerable improvement in network latency and bandwidth usage over the traditional cloud-centric paradigm. However, the next generation networks continue to be stymied by their inability to achieve adaptive, energy-efficient, timely data transfer in a dynamic and failure-prone environment—the very optimization challenges that are dealt with by biological networks as a consequence of millions of years of evolution. The transcriptional regulatory network (TRN) is a biological network whose innate topological robustness is a function of its underlying graph topology. In this article, we survey these properties of TRN and the metrics derived therefrom that lend themselves to the design of smart networking protocols and architectures. We then review a body of literature on bio-inspired networking solutions that leverage the stated properties of TRN. Finally, we present a vision for specific aspects of TRNs that may inspire future research directions in the fields of large-scale social and communication networks.  more » « less
Award ID(s):
2104078
PAR ID:
10634012
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
ACM Computing Surveys
Volume:
54
Issue:
8
ISSN:
0360-0300
Page Range / eLocation ID:
1 to 36
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Resource sharing is fundamental to the design of telecommunication networks. The technology, economic and policy forces shaping the transition to next-generation digital networking infrastructure—characterized here as “5G+” (for 5G and beyond)—make new and evolved forms of edge sharing a necessity. Despite this necessity, most of the economic and policy research on Network Sharing Agreements (NSAs) has focused on sharing among service providers offering retail services via networks owned and operated by legacy fixed and mobile network operators (MNOs). In this essay, we make the case for why increased and more dynamic options for sharing, in particular of end-user owned network infrastructure, should be embraced for the future of NSAs. Furthermore, we explain how such a novel sharing paradigm must be matched by appropriate regulatory policies. 
    more » « less
  2. Abstract Molecular interactions are studied as independent networks in systems biology. However, molecular networks do not exist independently of each other. In a network of networks approach (called multiplex), we study the joint organization of transcriptional regulatory network (TRN) and protein–protein interaction (PPI) network. We find that TRN and PPI are non-randomly coupled across five different eukaryotic species. Gene degrees in TRN (number of downstream genes) are positively correlated with protein degrees in PPI (number of interacting protein partners). Gene–gene and protein–protein interactions in TRN and PPI, respectively, also non-randomly overlap. These design principles are conserved across the five eukaryotic species. Robustness of the TRN–PPI multiplex is dependent on this coupling. Functionally important genes and proteins, such as essential, disease-related and those interacting with pathogen proteins, are preferentially situated in important parts of the human multiplex with highly overlapping interactions. We unveil the multiplex architecture of TRN and PPI. Multiplex architecture may thus define a general framework for studying molecular networks. This approach may uncover the building blocks of the hierarchical organization of molecular interactions. 
    more » « less
  3. The edge computing paradigm allows computationally intensive tasks to be offloaded from small devices to nearby (more) powerful servers, via an edge network. The intersection between such edge computing paradigm and Machine Learning (ML), in general, and deep learning in particular, has brought to light several advantages for network operators: from automating management tasks, to gain additional insights on their networks. Most of the existing approaches that use ML to drive routing and traffic control decisions are valuable but rarely focus on challenged networks, that are characterized by continually varying network conditions and the high volume of traffic generated by edge devices. In particular, recently proposed distributed ML-based architectures require either a long synchronization phase or a training phase that is unsustainable for challenged networks. In this paper, we fill this knowledge gap with Blaster, a federated architecture for routing packets within a distributed edge network, to improve the application's performance and allow scalability of data-intensive applications. We also propose a novel path selection model that uses Long Short Term Memory (LSTM) to predict the optimal route. Finally, we present some initial results obtained by testing our approach via simulations and with a prototype deployed over the GENI testbed. By leveraging a Federated Learning (FL) model, our approach shows that we can optimize the communication between SDN controllers, preserving bandwidth for the data traffic. 
    more » « less
  4. Abstract Antibiotic treatment kills a large portion of a population, while a small, tolerant subpopulation survives. Tolerant bacteria disrupt antibiotic efficacy and increase the likelihood that a population gains antibiotic resistance, a growing health concern. We examined howE. colitranscriptional networks changed in response to lethal ampicillin concentrations. We are the first to apply transcriptional regulatory network (TRN) analysis to antibiotic tolerance by leveraging existing knowledge and our transcriptional data. TRN analysis shows that gene expression changes specific to ampicillin treatment are likely caused by specific sigma and transcription factors typically regulated by proteolysis. These results demonstrate that to survive lethal concentration of ampicillin specific regulatory proteins change activity and cause a coordinated transcriptional response that leverages multiple gene systems. 
    more » « less
  5. Wireless data traffic, especially video traffic, continues to increase at a rapid rate. Innovative network architectures and protocols are needed to improve the efficiency of data delivery and the quality of experience (QoE) of mobile users. Mobile edge computing (MEC) is a new paradigm that integrates computing capabilities at the edge of the wireless network. This paper presents a computation-capable and programmable wireless access network architecture to enable more efficient and robust video content delivery based on the MEC concept. It incorporates in-network data processing and communications under a unified software-defined networking platform. To address the multiple resource management challenges that arise in exploiting such integration, we propose a framework to optimize the QoE for multiple video streams, subject to wireless transmission capacity and in-network computation constraints. We then propose two simplified algorithms for resource allocation. The evaluation results demonstrate the benefits of the proposed algorithms for the optimization of video content delivery. 
    more » « less