skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Kinetics and Oligomer Products of the Multiphase Reactions of Hydroxyacetone with Atmospheric Amines, Ammonium Sulfate, and Cloud Processing
Hydroxyacetone (HA) is an atmospheric oxidation product of isoprene and other organic precursors that can form brown carbon (BrC). Measured bulk aqueous-phase reaction rates of HA with ammonium sulfate, methylamine, and glycine suggest that these reactions cannot compete with aqueous-phase hydroxyl radical oxidation. In cloud chamber photooxidation experiments with either gaseous or particulate HA in the presence of the same N-containing species, BrC formation was minor, with similar mass absorption coefficients at 365 nm (<0.05 m2 g−1). However, rapid changes observed in aerosol volume and gas-phase species concentrations suggest that the lack of BrC was not due to slow reactivity. Filter-based UHPLC/(+)ESI-HR-QTOFMS analysis revealed that the SOA became heavily oligomerized, with average molecular masses of ∼400 amu in all cases. Oligomers contained, on average, 3.9 HA, 1.5 ammonia, and 1.6 other small aldehydes, including, in descending order of abundance, acetaldehyde, glycolaldehyde, glyoxal, and methylglyoxal. PTR-ToF-MS confirmed the production of these aldehydes. We identify C17H26O5, C10H22O9, C15H27NO7, C17H23NO5, and C18H32N2O9 as potential tracer ions for HA oligomers. We hypothesize that efficient oligomerization without substantial BrC production is due to negligible N-heterocycle (e.g., imidazoles/pyrazines) formation. While HA photooxidation is unlikely a significant atmospheric BrC source, it may contribute significantly to aqueous SOA formation.  more » « less
Award ID(s):
2218491
PAR ID:
10634089
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
ACS Earth and Space Chemistry
Volume:
8
Issue:
12
ISSN:
2472-3452
Page Range / eLocation ID:
2574 to 2586
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Guaiacol, present in wood smoke, readily forms secondary organic aerosol (SOA), and, in the aqueous phase, brown carbon (BrC) species. Here, BrC is produced in an illuminated chamber containing guaiacol(g), HOOH(g) as an OH radical source, and either deliquesced salt particles or guaiacol SOA at 50% relative humidity. BrC production slows without an OH source (HOOH), likely due to low levels of radical generation by photosensitization, perhaps involving surface-adsorbed guaiacol and dissolved oxygen. With or without HOOH, BrC mass absorption coefficients at 365 nm generated by the guaiacol + OH reaction reach a maximum at ~6 h of atmospheric OH exposure, after which photobleaching becomes dominant. In the presence of soluble iron but no HOOH, more BrC is produced, likely due to insoluble polymer production observed in previous studies. However, with both soluble iron and HOOH (enabling Fenton chemistry), significantly less SOA and BrC are produced due to very high oxidation rates, and the average SOA carbon oxidation state reaches 2, indicating carboxylate products like oxalate. These results indicate that SOA and BrC formation by guaiacol photooxidation can take place over a wider range of atmospheric conditions than previously thought, and that the effects of iron(II) depend on HOOH. Multiphase guaiacol photooxidation likely makes a significant contribution to producing highly oxidized SOA material in smoke plumes. 
    more » « less
  2. Furans are a major class of volatile organic compounds emitted from biomass burning. Their high reactivity with atmospheric oxidants leads to the formation of secondary organic aerosol (SOA), including secondary brown carbon (BrC) that can affect global climate via interactions with solar radiation. Here, we investigate the optical properties and chemical composition of SOA generated via photooxidation of furfural, 2‐methylfuran, and 3‐methylfuran under dry (RH < 5%) and humid (RH ∼ 50%) conditions in the presence of nitrogen oxides (NOx) and ammonium sulfate seed aerosol. Dry furfural oxidation has the greatest BrC formation, including reduced nitrogen‐containing organic compounds (NOCs) in SOA, which are dominated by amines and amides formed from reactions between carbonyls and ammonia/ammonium. Based on the products detected, we propose novel formation pathways of NOCs in furfural photooxidation, which can contribute to BrC via accretion reactions during the photochemical aging of biomass burning plumes. 
    more » « less
  3. Catechol (1,2-benzenediol), a common phenolic species emitted during biomass burning, is both redox active and metal chelating. When oxidized by OH radicals in the aqueous phase, it rapidly forms brown carbon (BrC). Here, we report chamber studies of the multiphase chemistry of catechol using HOOH as an OH radical source, soluble iron, simulated sunlight, and either deliquesced or solid-phase seed particles. BrC of remarkable similarity (MAC365 = 1.7 ±0.2 m2 g-1, “medium-BrC” category) was produced whenever gas-phase catechol was photolyzed in the chamber, with or without the presence of an OH radical source, soluble iron, or deliquesced aerosol. The speed and quantity of BrC formation varied, however. While BrC production was slower in the absence of an OH radical source, multiple lines of evidence suggest that OH generation via photosensitization by surface-adsorbed catechol can still generate BrC. Fenton chemistry actively occurred in surface-adsorbed water layers even below the seed particle deliquescence point, leading to significant production of gas-phase benzoquinone. Ratios of BrC and secondary organic aerosol (SOA) relative to catechol concentrations were highest in the presence of trace amounts of soluble iron, HOOH, and simulated sunlight, indicating that photo-Fenton chemistry contributed substantially to BrC and SOA formation by catechol. Finally, we observed that BrC and SOA formation by catechol / photo-Fenton chemistry can occur efficiently even at 40% RH. These results are consistent with catechol being a major source of secondary BrC in biomass burning plumes, even at moderate relative humidity. 
    more » « less
  4. Recent studies have found concentrations of reactive chlorine species to be higher than expected, suggesting that atmospheric chlorine chemistry is more extensive than previously thought. Chlorine radicals can interact with hydroperoxy (HOx) radicals and nitrogen oxides (NOx) to alter the oxidative capacity of the atmosphere. They are known to rapidly oxidize a wide range of volatile organic compounds (VOCs) found in the atmosphere, yet little is known about secondary organic aerosol (SOA) formation from chlorine-initiated photooxidation and its atmospheric implications. Environmental chamber experiments were carried out under low-NOx conditions with isoprene and chlorine as primary VOC and oxidant sources. Upon complete isoprene consumption, observed SOA yields ranged from 7 to 36 %, decreasing with extended photooxidation and SOA aging. Formation of particulate organochloride was observed. A high-resolution time-of-flight chemical ionization mass spectrometer was used to determine the molecular composition of gas-phase species using iodide–water and hydronium–water cluster ionization. Multi-generational chemistry was observed, including ions consistent with hydroperoxides, chloroalkyl hydroperoxides, isoprene-derived epoxydiol (IEPOX), and hypochlorous acid (HOCl), evident of secondary OH production and resulting chemistry from Cl-initiated reactions. This is the first reported study of SOA formation from chlorine-initiated oxidation of isoprene. Results suggest that tropospheric chlorine chemistry could contribute significantly to organic aerosol loading. 
    more » « less
  5. null (Ed.)
    Cloud cycling plays a key role in the evolution of atmospheric particles and gases, producing secondary aerosol mass and transforming the optical properties and impacts of aerosols globally. In this study, bulk cloud water samples collected at Whiteface Mountain (Wilmington, NY) in the summer of 2017 were aerosolized, dried to 50% RH, and analyzed for the evaporative loss of water soluble organic carbon (WSOC) and for brown carbon (BrC) formation. Systematic WSOC evaporation occurred in all cloud water samples, while no evidence for drying induced BrC formation was observed. On average, 11% (±3%) of WSOC evaporated when the aerosolized cloud droplets were dried to 50% RH, though this represents a lower bound on the WSOC reversibly partitioned to clouds due to experimental constraints. To our knowledge, this represents the first direct measurements of organic evaporation from actual cloud water undergoing drying. Formate and acetate contributed 19%, on average, to the evaporated WSOC, while no oxalate evaporation occurred. GECKO-A model simulations were carried out to predict the production of WSOC compounds that reversibly partition to cloud water from photooxidation of an array of VOCs. The model results suggest that precursor VOC identity and oxidation regime (VOC:NO x ) have a dramatic effect on the reversible partitioning of WSOC to cloud water and the abundance of aqSOA precursors, though the higher abundance of reversibly partitioned WSOC predicted by the model may be due to aqueous production of low-volatility material in the actual cloud samples. This study underscores the importance of the large fraction of unidentified compounds that contribute to WSOC in cloud water and their aqueous processing. 
    more » « less