skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 25, 2026

Title: Toward Standardized Microscale Tensile Testing for Two‐Photon Polymerization‐Fabricated Materials in Liquid
Two‐photon polymerization (TPP) enables the fabrication of intricate 3D microstructures with submicron precision, offering significant potential in biomedical applications like tissue engineering. In such applications, to print materials and structures with defined mechanics, it is crucial to understand how TPP printing parameters impact the material properties in a physiologically relevant liquid environment. Herein, an experimental approach utilizing microscale tensile testing (μTT) for the systematic measurement of TPP‐fabricated microfibers submerged in liquid as a function of printing parameters is introduced. Using a diurethane dimethacrylate‐based resin, the influence of printing parameters on microfiber geometry is first explored, demonstrating cross‐sectional areas ranging from 1 to 36 μm2. Tensile testing reveals Young's moduli between 0.5 and 1.5 GPa and yield strengths from 10 to 60 MPa. The experimental data show an excellent fit with the Ogden hyperelastic polymer model, which enables a detailed analysis of how variations in writing speed, laser power, and printing path influence the mechanical properties of TPP microfibers. The μTT method is also showcased for evaluating multiple commercial resins and for performing cyclic loading experiments. Collectively, this study builds a foundation toward a standardized microscale tensile testing framework to characterize the mechanical properties of TPP printed structures.  more » « less
Award ID(s):
2503605
PAR ID:
10634098
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Small Science
ISSN:
2688-4046
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Two‐photon polymerization (TPP) is widely used to create 3D micro‐ and nanoscale scaffolds for biological and mechanobiological studies, which often require the mechanical characterization of the TPP fabricated structures. To satisfy physiological requirements, most of the mechanical characterizations need to be conducted in liquid. However, previous characterizations of TPP fabricated structures are all conducted in air due to the limitation of conventional micro‐ and nanoscale mechanical testing methods. In this study, a new experimental method is reported for testing the mechanical properties of TPP‐printed microfibers in liquid. The experiments show that the mechanical behaviors of the microfibers tested in liquid are significantly different from those tested in air. By controlling the TPP writing parameters, the mechanical properties of the microfibers can be tailored over a wide range to meet a variety of mechanobiology applications. In addition, it is found that, in water, the plasticly deformed microfibers can return to their predeformed shape after tensile strain is released. The shape recovery time is dependent on the size of microfibers. The experimental method represents a significant advancement in mechanical testing of TPP fabricated structures and may help release the full potential of TPP fabricated 3D tissue scaffolds for mechanobiological studies. 
    more » « less
  2. Fabricating polymer-matrix composite materials with microfibers aligned along a user-specified direction is important to obtain specific material properties, such as anisotropic electrical and thermal conductivity and improved mechanical strength. We quantify macro- and microscale alignment of microfibers embedded in photopolymer resin, 3D-printed using ultrasound directed self-assembly (DSA) and stereolithography, as a function of three dimensionless input parameters: microfiber weight fraction, dimensionless ultrasound transducer input power, and dimensionless ultrasound transducer separation distance. We use regression analysis to determine microfiber alignment as a function of the fabrication process parameters. Microscale alignment is primarily determined by microfiber weight fraction, whereas macroscale alignment is a function of microfiber weight fraction, dimensionless ultrasound transducer separation distance, and dimensionless ultrasound transducer input power. Relating microfiber alignment to the fabrication process parameters is a crucial step towards 3D-printing composite materials with specific anisotropic material properties. 
    more » « less
  3. Abstract Additive manufacturing, an innovative process that assembles materials layer by layer from 3D model data, is recognized as a transformative technology across diverse industries. Researchers have extensively investigated the impact of various printing parameters of 3D printing machines, such as printing speed, nozzle temperature, and infill, on the mechanical properties of printed objects. Specifically, this study focuses on applying Finite Element Analysis (FEA) in G code modification in Fused Deposition Modeling (FDM) 3D Printing. FDM involves extruding a thermoplastic filament in layers over a build plate to create a three-dimensional object. In the realm of load-bearing structures, the Finite Element Analysis (FEA) process is initiated on the target object, employing the primary load to identify areas with high-stress concentrations. Subsequently, optimization techniques are used to strategically assign printing parameter combinations to improve mechanical properties in potentially vulnerable regions. The ultimate objective is to tailor the G code, a set of instructions for the printer, to strengthen particular areas and improve the printed object’s overall structural integrity. To evaluate the suggested methodology’s efficacy, the study conducts a comprehensive analysis of printed objects, both with and without the optimized G code. Simultaneously, mechanical testing, such as tensile testing, demonstrates quantitative data on structural performance. This comprehensive analysis aims to identify the impact of G code alteration on the finished product. Preliminary experimental results using simple tensile specimens indicate notable improvements in structural performance. Importantly, these improvements are achieved without any discernible mass increase, optimizing material usage and reducing the cost of additive manufacturing. The modified G code targets to strengthen critical areas using updated printing parameters without a net increase in the overall material consumption of the object. This finding holds significant implications for industries reliant on additive manufacturing for load-bearing components, offering a promising avenue for improved efficiency and durability. Integrating advanced techniques, such as G code modification and finite element analysis (FEA), as the additive manufacturing landscape evolves presents a pathway toward optimizing mechanical properties. By contributing valuable insights and laying the groundwork for further exploration and refinement of these methodologies, this study paves the way for enhanced structural performance in various additive manufacturing applications. Ultimately, it encourages innovation and progress in the field, propelling the industry toward new heights of efficiency and reliability. 
    more » « less
  4. Liquid metal fibers are increasingly used in soft multifunctional materials and soft electronics due to their superb stretchability, high conductivity, and lightweight. This work presents a systematic study of the electrospinning process of liquid metal microfibers. Compared to other methods that usually produce fibers thicker than 100 μm, electrospinning is a facile and low‐cost method of producing liquid metal fibers in the range of 10–100 μm. Specifically, core‐sheath liquid metal microfibers are fabricated with a highly conductive liquid metal core and a super‐stretchable thermoplastic elastomer sheath. This manufacturing process uses a liquid metal emulsion as the core solution, which circumvents manufacturing failures caused by the high surface tension of liquid metals. The influence of key processing parameters such as core flow rate, sheath flow rate, and applied voltage on the fiber diameter and morphology is studied by experiments. The mechanical and electrical properties of the as‐fabricated liquid metal microfibers, mats, and yarns are tested and discussed. 
    more » « less
  5. Recent advancements in additive manufacturing such as Direct Write Inkjet printing introduced novel tools that allow controlled and precise deposition of fluid in nano-liter volumes, enabling fabrication of multiscale structures with submillimeter dimensions. Applications include fabrication of flexible electronics, sensors, and assembly of Micro-Electro-Mechanical Systems (MEMS). Critical challenges remain in the control of fluid deposition parameters during Inkjet printing to meet specific dimensional footprints at the microscale necessary for the assembly process of microscale structures. In this paper we characterize an adhesive deposition printing process with a piezo-electric dispenser of nano-liter volumes. Applications include the controlled delivery of high viscosity Ultraviolet (UV) and thermal curable adhesives for the assembly of the MEMS structures. We applied the Taguchi Design of Experiment (DOE) method to determine an optimal set of process parameters required to minimize the size of adhesive printed features on a silicon substrate with good reliability and repeatability of the deposition process. Experimental results demonstrate repeatable deposition of UV adhesive features with 150 μm diameter on the silicon substrate. Based on the observed wettability effect of adhesive printed onto different substrates we propose a solution for further reduction of the deposit-substrate contact area for microassembly optimization. 
    more » « less