Liquid metal fibers are increasingly used in soft multifunctional materials and soft electronics due to their superb stretchability, high conductivity, and lightweight. This work presents a systematic study of the electrospinning process of liquid metal microfibers. Compared to other methods that usually produce fibers thicker than 100 μm, electrospinning is a facile and low‐cost method of producing liquid metal fibers in the range of 10–100 μm. Specifically, core‐sheath liquid metal microfibers are fabricated with a highly conductive liquid metal core and a super‐stretchable thermoplastic elastomer sheath. This manufacturing process uses a liquid metal emulsion as the core solution, which circumvents manufacturing failures caused by the high surface tension of liquid metals. The influence of key processing parameters such as core flow rate, sheath flow rate, and applied voltage on the fiber diameter and morphology is studied by experiments. The mechanical and electrical properties of the as‐fabricated liquid metal microfibers, mats, and yarns are tested and discussed.
Two‐photon polymerization (TPP) is widely used to create 3D micro‐ and nanoscale scaffolds for biological and mechanobiological studies, which often require the mechanical characterization of the TPP fabricated structures. To satisfy physiological requirements, most of the mechanical characterizations need to be conducted in liquid. However, previous characterizations of TPP fabricated structures are all conducted in air due to the limitation of conventional micro‐ and nanoscale mechanical testing methods. In this study, a new experimental method is reported for testing the mechanical properties of TPP‐printed microfibers in liquid. The experiments show that the mechanical behaviors of the microfibers tested in liquid are significantly different from those tested in air. By controlling the TPP writing parameters, the mechanical properties of the microfibers can be tailored over a wide range to meet a variety of mechanobiology applications. In addition, it is found that, in water, the plasticly deformed microfibers can return to their predeformed shape after tensile strain is released. The shape recovery time is dependent on the size of microfibers. The experimental method represents a significant advancement in mechanical testing of TPP fabricated structures and may help release the full potential of TPP fabricated 3D tissue scaffolds for mechanobiological studies.
more » « less- PAR ID:
- 10391751
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Functional Materials
- Volume:
- 33
- Issue:
- 3
- ISSN:
- 1616-301X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract 3D‐printed hydrogel scaffolds functionalized with conductive polymers have demonstrated significant potential in regenerative applications for their structural tunability, physiochemical compatibility, and electroactivity. Controllably generating conductive hydrogels with fine features, however, has proven challenging. Here, micro‐continuous liquid interface production (μCLIP) method is utilized to 3D print poly(2‐hydroxyethyl methacrylate) (pHEMA) hydrogels. With a unique in‐situ polymerization approach, a sulfonated monomer is first incorporated into the hydrogel matrix and subsequently polymerized into a conjugated polyelectrolyte, poly(4‐(2,3‐dihydro‐thieno[3,4‐
b ][1,4]dioxin‐2‐ylmethoxy)‐butane‐1 sulfonic acid sodium salt (PEDOT‐S). Rod structures are fabricated at different crosslinking levels to investigate PEDOT‐S incorporation and its effect on bulk hydrogel electronic and mechanical properties. After demonstrating that PEDOT‐S does not significantly compromise the structures of the bulk material, pHEMA scaffolds are fabricated via μCLIP with features smaller than 100 µm. Scaffold characterization confirms PEDOT‐S incorporation bolstered conductivity while lowering overall modulus. Finally, C2C12 myoblasts are seeded on PEDOT‐pHEMA structures to verify cytocompatibility and the potential of this material in future regenerative applications. PEDOT‐pHEMA scaffolds promote increased cell viability relative to their non‐conductive counterparts and differentially influence cell organization. Taken together, this study presents a promising new approach for fabricating complex conductive hydrogel structures for regenerative applications. -
ABSTRACT In today’s technology, organ transplantation is found very challenging as it is not easy to find the right donor organ in a short period of time. In the last several decades, tissue engineering was rapidly developed to be used as an alternative approach to the organ transplantation. Tissue engineering aims to regenerate the tissues and also organs to help patients who waits for the organ transplantation. Recent research showed that in order to regenerate the tissues, cells must be seeded onto the 3D artificial laboratory fabricated matrices called scaffolds. If cells show healthy growth within the scaffolds, they can be implanted to the injured tissue to do the regeneration. One of the biggest limitation that reduces the success rate of tissue regeneration is the fabrication of accurate thick 3D scaffolds. In this research “maskless photolithography” was used to fabricate the scaffolds. Experiment setup consist of digital micro-mirror devices (DMD) (Texas Instruments, DLi4120), optical lens sets, UV light source (DYMAX, BlueWave 200) and PEGDA which is a liquid form photo-curable solution. In this method, scaffolds are fabricated in layer-by-layer fashion to control the interior architecture of the scaffolds. Working principles of the maskless photolithography is, first layer shape is designed with AutoCAD and the designed image is uploaded to the DMD as a bitmap file. DMD consists of hundreds of tiny micro-mirrors. When the UV light is turned on and irradiated the DMD, depending on the micro-mirrors’ angles, UV light is selectively reflected to the low percentage Polyethylene (glycol) Diacrylate (PEGDA) photo-curable solution. When UV light penetrates into the PEGDA, only the illuminated part is solidified and non-illuminated area still remains in the liquid phase. In this research, scaffolds were fabricated in three layers. First layer and the last layer are solid layers and y-shape open structure was sandwiched between these layers. After the first layer is fabricated with DMD, a “y-shape” structure was fabricated with the 3D printer by using the dissolvable filament. Then, it was placed onto the first solid layer and covered with fresh high percentage PEGDA solution. UV light was reflected to the PEGDA solution and solidified to make the second and third layers. After the scaffold was fabricated, it is dipped into the limonene solution to dissolve the y-shape away. Our results show that thick scaffolds can be fabricated in layer-by-layer fashion with “maskless photolithography”. Since the UV light is stable and does not move onto the PEGDA, entire scaffold can be fabricated in one single UV shot which makes the process faster than the current fabrication techniques.more » « less
-
In the last decade, 3D printing has attracted significant attention and has resulted in benefits to many research areas. Advances in 3D printing with smart materials at the microscale, such as hydrogels and liquid crystalline polymers, have enabled 4D printing and various applications in microrobots, micro-actuators, and tissue engineering. However, the material absorption of the laser power and the aberrations of the laser light spot will introduce a decay in the polymerization degree along the height direction, and the solution to this problem has not been reported yet. In this paper, a compensation strategy for the laser power is proposed to achieve homogeneous and high aspect ratio hydrogel structures at the microscale along the out-of-plane direction. Linear approximations for the power decay curve are adopted for height steps, discretizing the final high aspect ratio structures. The strategy is achieved experimentally with hydrogel structures fabricated by two-photon polymerization. Moreover, characterizations have been conducted to verify the homogeneity of the printed microstructures. Finally, the saturation of material property is investigated by an indirect 3D deformation method. The proposed strategy is proved to be effective and can be explored for other hydrogel materials showing significant deformation. Furthermore, the strategy for out-of-plane variations provides a critical technique to achieve 4D-printed homogeneous shape-adaptive hydrogels for further applications.more » « less
-
Additive manufacturing (AM), also known as three-dimensional (3D) printing, is thriving as an effective and robust method in fabricating architected piezoelectric structures, yet most of the commonly adopted printing techniques often face the inherent speed-accuracy trade-off, limiting their speed in manufacturing sophisticated parts containing micro-/nanoscale features. Herein, stabilized, photo-curable resins comprising chemically functionalized piezoelectric nanoparticles (PiezoNPs) were formulated, from which microscale architected 3D piezoelectric structures were printed continuously via micro continuous liquid interface production ( μ CLIP) at speeds of up to ~60 μ m s -1 , which are more than 10 times faster than the previously reported stereolithography-based works. The 3D-printed functionalized barium titanate (f-BTO) composites reveal a bulk piezoelectric charge constant d 33 of 27.70 pC N -1 with the 30 wt% f-BTO. Moreover, rationally designed lattice structures that manifested enhanced, tailorable piezoelectric sensing performance as well as mechanical flexibility were tested and explored in diverse flexible and wearable self-powered sensing applications, e.g., motion recognition and respiratory monitoring.more » « less