Abstract Internet of Things (IoT) sensor networks are an emerging technology at the center of the datafication and optimization of far-reaching environmental infrastructures—from “smart cities” to workplace efficiencies. However, this low-power, low-cost technology is also well suited to local deployments in rural communities, which are often overlooked by digital development initiatives. Therefore, we used a social construction of technology approach to study how various U.S.-based IoT stakeholders—including designers and advocates as well as citizen stakeholders—understand and value sensor network technologies. Through observational methods, in-depth interviews, and participatory design research in a rural Upstate New York municipality, we worked to design sensor networks with rural community members to generate data about and for community members to further local knowledge. We found that designing rural sensor networks requires stakeholders to navigate obstacles of communication about sensors and communication through sensors to facilitate secure, ethical, and localized sensing in rural communities.
more »
« less
“The Devil You Know”: Barriers and Opportunities for Co-Designing Microclimate Sensors, A Case Study of Manoomin
Current environmental challenges have profound local consequences and often benefit from the collection of fine-grained microclimate data. Advances in wireless sensor networks and the Internet of Things have led to technologies nominally suited to support remote sensing; however, in practice long-running deployments of in-field environmental sensors are rare. Field conditions are often remote and culturally sensitive, with limited power, Internet, transportation, and human infrastructure; advances in device technology alone will not suffice. We ask how communities, Internet of Things researchers, government, and other interested parties can work together to co-design useful, low burden, sustainability-focused infrastructure. Toward this end, we conducted 11 semi-structured interviews with 13 experts who use or rely on environmental sensing technology. To complement our interview data, we engaged in three months of participant observation while immersed in organizations specifically working toward manoomin (wild rice) conservation. We make two primary contributions. First, we confirm and enrich a five-stage model, the microclimate sensor lifecycle, focusing on desired features and persistent challenges. Second, we outline a space for co-design of microclimate sensors with emphasis on the cost of experience, the generally unaddressed issue of technical usability in the messy field, and the opportunity for community engagement to improve technical design and outcomes. Furthermore, we discuss future design opportunities, recommendations, and challenges in the microclimate sensor design, deployment, and sustainability space.
more »
« less
- PAR ID:
- 10634521
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- ACM Journal on Computing and Sustainable Societies
- Volume:
- 2
- Issue:
- 3
- ISSN:
- 2834-5533
- Page Range / eLocation ID:
- 1 to 30
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Connectivity is at the heart of the future Internet-of-Things (IoT) infrastructure, which can control and communicate with remote sensors and actuators for the beacons, data collections, and forwarding nodes. Existing sensor network solutions cannot solve the bottleneck problems near the sink node; the tree-based Internet architecture has the single point of failure. To solve current deficiencies in multi-hop mesh network and cross-domain network design, we propose a mesh inside a mesh IoT network architecture. Our designed "edge router" incorporates these two mesh networks together and performs seamlessly transmission of multi-standard packets. The proposed IoT testbed interoperates with existing multi-standards (Wi-Fi, 6LoWPAN) and segments of networks, and provides both high-throughput Internet and resilient sensor coverage throughout the community.more » « less
-
The movement of animals is strongly influenced by external factors in their surrounding environment such as weather, habitat types, and human land use. With advances in positioning and sensor technologies, it is now possible to capture animal locations at high spatial and temporal granularities. Likewise, modern space-based remote sensing technology provides us with an increasing access to large volumes of environmental data, some of which changes on an hourly basis. Environmental data are heterogeneous in source and format, and are usually obtained at different scales and granularities than movement data. Indeed, there remain scientific and technical challenges in developing linkages between the growing collections of animal movement data and the large repositories of heterogeneous remote sensing observations, as well as in the developments of new statistical and computational methods for the analysis of movement in its environmental context. These challenges include retrieval, indexing, efficient storage, data integration, and analytic techniques. We have developed a new system - the Environmental-Data Automated Track Annotation (Env-DATA) - that automates annotation of movement trajectories with remote-sensing environmental information, including high resolution topography, weather from global and regional reanalysis datasets, climatology, human geography, ocean currents and productivity, land use, vegetation and land surface variables, precipitation, fire, and other global datasets. The system automates the acquisition of data from open web resources of remote sensing and weather data and provides several interpolation methods from the native grid resolution and structure to a global regular grid linked with the movement tracks in space and time. Env-DATA provides an easy-to-use platform for end users that eliminates technical difficulties of the annotation processes, including data acquisition, data transformation and integration, resampling, interpolation and interpretation. The new Env-DATA system enhances Movebank (www.movebank.org), an open portal of animal tracking data. The aim is to facilitate new understanding and predictive capabilities of spatiotemporal patterns of animal movement in response to dynamic and changing environments from local to global scales. The system is already in use by scientists worldwide, and by several conservation managers, such as the consortium of federal and private institution that manage the endangered Californian Condor populations.more » « less
-
Abstract Exposure to hazardous chemicals in the air humans breathe voluntarily or during dangerous situations such as fires or military conflicts (i.e., accidental or intentional) is a terrifying certainty. Technical challenges such as low cost, operational simplicity, response time, sensitivity, specificity, and environmental robustness often create barriers to the development of real‐time chemical sensor systems that will be broadly useful to both the private sector and the government. A multi‐mode liquid crystal sensor platform is presented that requires zero power to operate and can, based simply on the device design, be used as acute ppt‐level and analytical ppm‐level (dose × time) sensors. Inkjet printing of nanoparticles with a reactive ligand shell that affects the anchoring of nematic liquid crystal molecules facilitates the creation of sensors devices that produces an unmistakable warning or image solely based on the transmission or reflection of light. Based on the printing resolution and device architecture, these sensor devices can detect multiple gases or vapors on the same device and be used for remote sensing.more » « less
-
Human activities are causing global change around the world including habitat destruction, invasive species in non-native ecosystems, overexploitation, pollution, and global climate change. While traditional monitoring has long been used to quantify and aid mitigation of global change,in-situautonomous sensors are being increasingly used for environmental monitoring. Sensors and sensor platforms that can be deployed in developed and remote areas and allow high-frequency data collection, which is critical for parameters that exhibit important short-term dynamics on the scale of days, hours, or minutes. In this article, we discuss the benefits ofin-situautonomous sensors in aquatic ecosystems as well as the many challenges that we have experienced over many years of working with these technologies. These challenges include decisions on sensor locations, sensor types, analytical specification, sensor calibration, sensor drift, the role of environmental conditions, sensor fouling, service intervals, cost of ownership, and data QA/QC. These challenges result in important tradeoffs when making decisions regarding which sensors to deploy, particularly when a network of sensors is desired to cover a large area. We also review recent advances in designing and building chemical-sensor platforms that are allowing researchers to develop the next-generation of autonomous sensors and the power of integrating multiple sensors into a network that provides increased insight into the dynamics of water quality over space and time. In the coming years, there will be an exponential growth in data related to aquatic sensing, which will be an essential part of global efforts to monitor and mitigate global change and its adverse impacts on society.more » « less
An official website of the United States government

