skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 17, 2026

Title: Shape and Topology Optimization of Circular Halbach Array using a Cardinal Basis Function (CBF) Based Parametric Level Set Method
A Halbach array is a specialized arrangement of permanent magnets designed to generate a strong, uniform magnetic field in the designated region. This unique configuration has been widely utilized in various applications, including magnetic levitation (maglev) systems, electric motors, particle accelerators, and magnetic seals. The advantages of Halbach arrays include high efficiency, reduced weight, and precise directional control of the magnetic field. Halbach arrays are commonly categorized into two configurations: linear and cylindrical. A linear Halbach array produces a concentrated magnetic field on one face and is frequently employed in maglev trains and conveyor systems to ensure stable and efficient operation. In contrast, a cylindrical Halbach array consists of magnets arranged in a ring, generating a uniform magnetic field within the cylinder while suppressing the external field. This configuration is particularly advantageous in applications such as brushless electric motors and magnetic resonance imaging (MRI) systems. Traditionally, the design of electromagnetic systems incorporating Halbach arrays relied on engineers’ expertise and intuition due to the complexity of the permanent magnet configuration. However, advancements in numerical methods, particularly topology optimization, have introduced a systematic approach to optimizing the shape and distribution of permanent magnets within a given design domain. In the context of Halbach array design, topology optimization aims to maximize the total magnetic flux within a designated region while simultaneously determining the optimal material distribution to achieve a specified design objective. This approach enhances the performance and efficiency of Halbach arrays, providing a more precise and automated framework for their development. In this paper, we propose a Cardinal Basis Function (CBF)-based level-set method for designing a circular Halbach array capable of generating a uniform magnetic field within a designated region. The CBF-based level-set method offers significant computational advantages by reducing the computational cost and accelerating the convergence process. This approach enhances the efficiency of the optimization process, making it a promising technique for the systematic design of Halbach arrays.  more » « less
Award ID(s):
2213852
PAR ID:
10634611
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Society of Mechanical Engineers (ASME)
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Synchronous reluctance motors (SynRMs) have gained considerable attention in the field of electric vehicles as they reduce the need for permanent magnets in the rotor, resulting in less material and manufacturing costs. However, their lower average torque and torque ripple vibrations have been identified as key issues that require resolution. In this study, we present a SynRM design framework employing the cardinal basis functions (CBF)-based parametric level set method. The SynRms design problem is recast as a variational problem constrained by Maxwell’s equations which describe the behavior of electric and magnetic fields in the SynRM. A continuum shape sensitivity analysis is carried out using the material derivative and adjoint method. A distance regularization energy function is employed to maintain the level set function as a signed distance function during the optimization. The parametric topology optimization problem is computationally solved using the Method of Moving Asymptotes (MMA). To demonstrate the effectiveness of our approach, we present a numerical example that compares the torque characteristics of the optimal design with those of a reference design. Preliminary results show that the optimized SynRM has a 30.30% increase in average torque, along with a slight increase in torque ripple, compared to the reference model. 
    more » « less
  2. Generators are considered as the core application of electromagnetic machines, which require high-cost rare-earth-based permanent magnets. The development of generators is moving toward high efficiency and increased environmental friendliness. Minimizing the use of rare earth materials such as magnetic materials under the premise of machine performance emerges as a challenging task. Topology optimization has been promisingly applied to many application areas as a powerful generative design tool. It can identify the optimal distribution of magnetic material in the defined design space. This paper employs the level-set-based topology optimization method to design the permanent magnet for generators. The machine under study is a simplified 2D outer rotor direct-drive wind power generator. The dynamic and static models of this generator are studied, and the magnetostatic system is adopted to conduct the topology optimization. The optimization goals in this study mainly focused on two aspects, namely the maximization of the system magnetic energy and the generation of a target magnetic field in the region of the air gap. The continuum shape sensitivity analysis is derived by using the material time derivative, the Lagrange multiplier method, and the adjoint variable method. Two numerical examples are investigated, and the effectiveness of the proposed design framework is validated by comparing the performance of the original design against the optimized design. 
    more » « less
  3. We demonstrate a simple and compact variable magnetic field source based on the permanent cube magnet array approximating a Halbach cylinder. The large air gap area accommodates standard cryostat tails while providing a high uniformity and magnetic field stability of up to 0.5 T over regions of up to about a centimeter. It eliminates magnetic remanence effects and produces reproducible fields without the need for feedback. Thanks to the low cost and exceptional energy efficiency, it provides an accessible solution for modest magnetic field requirements in a wide range of research applications. 
    more » « less
  4. Abstract Stimulus‐responsive polymers are attractive for microactuators because they can be easily miniaturized and remotely actuated, enabling untethered operation. In this work, magnetic Fe microparticles are dispersed in a thermoplastic polyurethane shape memory polymer matrix and formed into artificial, magnetic cilia by solvent casting within the vertical magnetic field in the gap between two permanent magnets. Interactions of the magnetic moments of the microparticles, aligned by the applied magnetic field, drive self‐assembly of magnetic cilia along the field direction. The resulting magnetic cilia are reconfigurable using light and magnetic fields as remote stimuli. Temporary shapes obtained through combined magnetic actuation and photothermal heating can be locked by switching off the light and magnetic field. Subsequently turning on the light without the magnetic field drives recovery of the permanent shape. The permanent shape can also be reprogrammed after preparing the cilia by applying mechanical constraints and annealing at high temperature. Spatially controlled actuation is demonstrated by applying a mask for optical pattern transfer into the array of magnetic cilia. A theoretical model is developed for predicting the response of shape memory magnetic cilia and elucidates physical mechanisms behind observed phenomena, enabling the design and optimization of ciliary systems for specific applications. 
    more » « less
  5. null (Ed.)
    A number of haptic displays based on smart fluidic materials such as electrorheological (ERFs) and magnetorheological fluids (MRFs) have been fabricated. These displays are relevant to medical virtual environments where it is important to create realistic simulations of soft tissues with varying stiffness. In this paper a new haptic device is described that was designed in consideration of the limitations of an earlier MRF display. The new prototype consists of 400 permanent magnets (PMs) arranged in a 20x20 array that is underneath a chamber filled with MRF. The magnetic field within the fluid is controlled by 400 PM stepping motors that move the magnets vertically. The magnetic behavior of the device was simulated using FEM which indicated that its spatial resolution was substantially improved when compared to the earlier prototype and that objects as small as 10 mm can be rendered. The device was fabricated and assembled and measurements demonstrated the accuracy of the FE model. Its novelty is demonstrated by the increased intensity of the magnetic field produced and the enhanced spatial resolution. These features will enable the dynamic presentation of haptic information such as object shape and compliance which will be characterized in future psychophysical experiments. 
    more » « less