skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 28, 2026

Title: Layer-selective spin-orbit coupling and strong correlation in bilayer graphene
Abstract Spin-orbit coupling (SOC) and electron-electron interaction can mutually influence each other and give rise to a plethora of intriguing phenomena in condensed matter systems. In pristine bilayer graphene (BLG), which has weak SOC, intrinsic Lifshitz transitions and concomitant van-Hove singularities lead to the emergence of many-body correlated phases. Layer-selective SOC can be proximity induced by adding a layer of tungsten diselenide (WSe2) on its one side. By applying an electric displacement field, the system can be tuned across a spectrum wherein electronic correlation, SOC, or a combination of both dominates. Our investigations reveal an intricate phase diagram of proximity-induced SOC-selective BLG. Not only does this phase diagram include those correlated phases reminiscent of SOC-free doped BLG, but it also hosts unique SOC-induced states allowing a compelling measurement of valleyg-factor and a correlated insulator at charge neutrality, thereby showcasing the remarkable tunability of the interplay between interaction and SOC in WSe2enriched BLG.  more » « less
Award ID(s):
1945351 2414726 2324033 2324032
PAR ID:
10634615
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
2D Materials
Volume:
12
Issue:
3
ISSN:
2053-1583
Page Range / eLocation ID:
035009
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Transition metal dichalcogenide (TMDC) moiré superlattices, owing to the moiré flatbands and strong correlation, can host periodic electron crystals and fascinating correlated physics. The TMDC heterojunctions in the type-II alignment also enable long-lived interlayer excitons that are promising for correlated bosonic states, while the interaction is dictated by the asymmetry of the heterojunction. Here we demonstrate a new excitonic state, quadrupolar exciton, in a symmetric WSe2-WS2-WSe2trilayer moiré superlattice. The quadrupolar excitons exhibit a quadratic dependence on the electric field, distinctively different from the linear Stark shift of the dipolar excitons in heterobilayers. This quadrupolar exciton stems from the hybridization of WSe2valence moiré flatbands. The same mechanism also gives rise to an interlayer Mott insulator state, in which the two WSe2layers share one hole laterally confined in one moiré unit cell. In contrast, the hole occupation probability in each layer can be continuously tuned via an out-of-plane electric field, reaching 100% in the top or bottom WSe2under a large electric field, accompanying the transition from quadrupolar excitons to dipolar excitons. Our work demonstrates a trilayer moiré system as a new exciting playground for realizing novel correlated states and engineering quantum phase transitions. 
    more » « less
  2. Abstract Excitons in two-dimensional (2D) semiconductors have offered an attractive platform for optoelectronic and valleytronic devices. Further realizations of correlated phases of excitons promise device concepts not possible in the single particle picture. Here we report tunable exciton “spin” orders in WSe2/WS2moiré superlattices. We find evidence of an in-plane (xy) order of exciton “spin”—here, valley pseudospin—around exciton fillingvex = 1, which strongly suppresses the out-of-plane “spin” polarization. Upon increasingvexor applying a small magnetic field of ~10 mT, it transitions into an out-of-plane ferromagnetic (FM-z) spin order that spontaneously enhances the “spin” polarization, i.e., the circular helicity of emission light is higher than the excitation. The phase diagram is qualitatively captured by a spin-1/2 Bose–Hubbard model and is distinct from the fermion case. Our study paves the way for engineering exotic phases of matter from correlated spinor bosons, opening the door to a host of unconventional quantum devices. 
    more » « less
  3. Abstract Moiré coupling in transition metal dichalcogenides (TMDCs) superlattices introduces flat minibands that enable strong electronic correlation and fascinating correlated states, and it also modifies the strong Coulomb-interaction-driven excitons and gives rise to moiré excitons. Here, we introduce the layer degree of freedom to the WSe2/WS2moiré superlattice by changing WSe2from monolayer to bilayer and trilayer. We observe systematic changes of optical spectra of the moiré excitons, which directly confirm the highly interfacial nature of moiré coupling at the WSe2/WS2interface. In addition, the energy resonances of moiré excitons are strongly modified, with their separation significantly increased in multilayer WSe2/monolayer WS2moiré superlattice. The additional WSe2layers also modulate the strong electronic correlation strength, evidenced by the reduced Mott transition temperature with added WSe2layer(s). The layer dependence of both moiré excitons and correlated electronic states can be well described by our theoretical model. Our study presents a new method to tune the strong electronic correlation and moiré exciton bands in the TMDCs moiré superlattices, ushering in an exciting platform to engineer quantum phenomena stemming from strong correlation and Coulomb interaction. 
    more » « less
  4. Abstract Coupled two-dimensional electron-hole bilayers provide a unique platform to study strongly correlated Bose-Fermi mixtures in condensed matter. Electrons and holes in spatially separated layers can bind to form interlayer excitons, composite Bosons expected to support high-temperature exciton condensates. The interlayer excitons can also interact strongly with excess charge carriers when electron and hole densities are unequal. Here, we use optical spectroscopy to quantitatively probe the local thermodynamic properties of strongly correlated electron-hole fluids in MoSe2/hBN/WSe2heterostructures. We observe a discontinuity in the electron and hole chemical potentials at matched electron and hole densities, a definitive signature of an excitonic insulator ground state. The excitonic insulator is stable up to a Mott density of ~0.8 × 1012cm−2and has a thermal ionization temperature of ~70 K. The density dependence of the electron, hole, and exciton chemical potentials reveals strong correlation effects across the phase diagram. Compared with a non-interacting uniform charge distribution, the correlation effects lead to significant attractive exciton-exciton and exciton-charge interactions in the electron-hole fluid. Our work highlights the unique quantum behavior that can emerge in strongly correlated electron-hole systems. 
    more » « less
  5. Abstract Moiré superlattices of semiconducting transition metal dichalcogenides enable unprecedented spatial control of electron wavefunctions, leading to emerging quantum states. The breaking of translational symmetry further introduces a new degree of freedom: high symmetry moiré sites of energy minima behaving as spatially separated quantum dots. We demonstrate the superposition between two moiré sites by constructing a trilayer WSe2/monolayer WS2moiré heterojunction. The two moiré sites in the first layer WSe2interfacing WS2allow the formation of two different interlayer excitons, with the hole residing in either moiré site of the first layer WSe2and the electron in the third layer WSe2. An electric field can drive the hybridization of either of the interlayer excitons with the intralayer excitons in the third WSe2layer, realizing the continuous tuning of interlayer exciton hopping between two moiré sites and a superposition of the two interlayer excitons, distinctively different from the natural trilayer WSe2
    more » « less